Recent Trends in Food Applications of Antioxidants

  • William L. Porter


In this paper, I shall discuss the important trends of the past seven years in applications of antioxidants in foods. The nature and course of lipid autoxidation and antioxidant action have been treated in a previous paper of this Symposium (Symposium, 1979), as has the effect of water activity. Other papers will deal with the biological effects of antioxidant use, including antimicrobial action. Natural antioxidants will also be treated elsewhere. Therefore, I shall discuss primarily the use of the commonly added synthetic antioxidants (Fig. 1) and four naturally occurring ones — α-tocopherol and ascorbic (Fig. 2), citric and phosphoric acids, which common usage seems to segregate from the “natural” antioxidants. In addition, I shall handle many secondary antioxygenic compounds and treatments, such as oxygen exclusion or scavenging, browning antioxidants, and products produced by fermentation, smoking, nitrite curing, and hydrolysis of vegetable protein.


Methyl Linoleate Food Application Propyl Gallate Ascorbyl Palmitate Tissue Food 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbot, J. and Waite, R., 1965, The effect of antioxidants on the keeping quality of whole milk powder. II. Tocopherols, J. Dairy Res., 32: 143.CrossRefGoogle Scholar
  2. Adamson, A. W., 1967, “Physical Chemistry of Surfaces,”, Second Edition, Interscience Publications, New York, p. 520.Google Scholar
  3. Allan, W. A. and Wood, H. L., 1970, Copper-catalyzed oxidation of linoleic acid in buffered aqueous solutions. J. Sci. Fd. Agr., 21: 282.CrossRefGoogle Scholar
  4. Anderson, R. H. and Huntley, T. E., 1964, Pro-oxidant effect of some carbonyl compounds in vegetable oils, JAOCS, 41: 686.CrossRefGoogle Scholar
  5. Anon, 1963, The Atlas HLB Systems, Fourth Printing, Atlas Chemical Industries, Wilmington, DE.Google Scholar
  6. Astill, B. D., Terhaar, C. J., Krasavage, W. J., Wolf, G. L., Roudabush, R. C., Fassett, D. W., and Morgareidge, K., 1975, Safety evaluation and biochemical behavior of monotertiarybutyl hydroquinone, JAOCS, 52: 53.CrossRefGoogle Scholar
  7. Aurand, W., Boone, N. H., and Giddings, G. G., 1977, Superoxide and singlet oxygen in milk lipid peroxidation, J. Dairy Sci., 60: 363.CrossRefGoogle Scholar
  8. Barnard, D., Bateman, L., Cole, E. R., and Cunneen, J. I., 1958, Sulfoxides and thiolsulfinates as inhibitors of autoxidation and other free radical reactions, Chem. and Ind. (Rev.), 918.Google Scholar
  9. Bateman, L., Bolland, J. L., Gee, G., 1951, Determination of absolute rate constants for olefinic oxidations by measurement of photochemical pre-and after-effects. Part II. -At “low” oxygen pressures, Trans. Faraday Soc., 47: 274.CrossRefGoogle Scholar
  10. Benedict, R. C., Strange, E. C., and Swift, C. E., 1975, Effect of lipid antioxidants on the stability of meat during storage, J. Agr. Food Chem., 23: 167.CrossRefGoogle Scholar
  11. Berner, D. L., Conte, J. A., and Jacobson, G. A., 1974, Rapid method for determining antioxidant activity and fat stability, JAOCS, 51: 292.CrossRefGoogle Scholar
  12. Betts, A. T. and Uri, N., 1963, Some unusual observations in comparison of liquid and solid phase autoxidation, Nature, 199: 568.CrossRefGoogle Scholar
  13. Betts, A. T. and Uri, N., 1966, The conversion of metal catalysts into inhibitors of autoxidation, Makromol. Chem., 95: 22.CrossRefGoogle Scholar
  14. Bishov, S. J. and Henick, A. S., 1974, The method of stabilizing foods with an antioxidant, U.S. Patent 3,852, 502.Google Scholar
  15. Bishov, S. J. and Henick, A. S., 1972, Antioxidant effect of protein hydrolyzates in a freeze-dried model system, J. Food Sci., 37: 873.CrossRefGoogle Scholar
  16. Bishov, S. J. and Henick, A. S., 1975, Antioxidant effect of protein hydrolyzates in freeze-dried model systems. Synergistic action with a series of phenolic antioxidants, J. Food Sci., 40:345.Google Scholar
  17. Bishov, S. J., Henick, A. S., Giffee, J. W., Nii, I. T., Prell, P. A., and Wolf, M., 1971, Quality and stability of some freezedried foods in “zero” oxygen headspace, J. Food Sci., 36: 532.Google Scholar
  18. Boehm, E. and Williams, R., 1945, Propyl gallate and autoxidation of oils, Quarterly J. Pharm. Pharmacology, 16: 232.Google Scholar
  19. Boehme, M. A. and Branen, A. L., 1977, Effects of food antioxidants on prostaglandin biosynthesis, J. Food Sci., 42: 1243.CrossRefGoogle Scholar
  20. Bolland, J. L. and Ten Have, P., 1947, The inhibitory effects of phenolic compounds on the thermal oxidation of ethyl linoleate, Disc. Far. Soc., 2: 252.CrossRefGoogle Scholar
  21. Braddock, R. J. and Dugan, L. R., Jr., 1973, Reaction of autoxidizing linoleate with coho salmon myosin, JAOCS, 50: 343.CrossRefGoogle Scholar
  22. Branen, A. L., 1975, Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene, JAOCS, 52: 59.CrossRefGoogle Scholar
  23. Branen, A. L., 1978, Antimicrobial effect of phenolic antioxidants, Abstract 77, 69th Ann. AOCS Spring Mtg., St. Louis, MO, JAOCS, 55: 242A.Google Scholar
  24. Brownlie, I. T. and Ingold, K. V., 1967, The inhibited autoxidation of styrene. Part VII. Inhibition by nitroxides and hydroxyl-amines, Can. J. Chem., 45: 2427.CrossRefGoogle Scholar
  25. Brugh, M., Jr., 1977, Butylated hydroxytoluene protects chickens exposed to Newcastle disease virus, Sci., 197: 1291.CrossRefGoogle Scholar
  26. Brunner, J. R., 1965, Physical equilibria in milk. The lipid phase, in: “Fundamentals of Dairy Chemistry,” B. H. Webb and A. H. Johnson, eds., Avi Publ. Co., Westport, CT, p. 403.Google Scholar
  27. Bullerman, L. B., Lieu, F. Y., and Scier, S. A., 1977, Inhibition of growth and aflatoxin production by cinnamon and clove oils. Cinnamic aldehyde and eugenol, J. Food Sci., 42: 1107.CrossRefGoogle Scholar
  28. Carlsson, D. J., Suprunchuk, T., and Wiles, D. M., 1976, Photooxidation of unsaturated oils: Effect of singlet oxygen quenchers, JAOCS, 53: 656.CrossRefGoogle Scholar
  29. Chahine, M. H. and MacNeill, R. F., 1974, Effect of stabilization of crude whale oil with tertiary butylhydroquinone and other antioxidants upon keeping quality of resultant deodorized oil, JAOCS, 51: 37.CrossRefGoogle Scholar
  30. Chio, K. S. and Tappel, A. L., 1969, Synthesis and characterization of the fluorescent products derived from malonaldehyde and amino acids, Biochem., 8: 2821.CrossRefGoogle Scholar
  31. Chipault, J. R., 1962, Antioxidants for use in foods, in: “Autoxidation and Antioxidants,” W. 0. Lundberg, ed., Interscience, Vol. 2, New York, p. 477.Google Scholar
  32. Chipault, J. R. and Hawkins, J. M., 1971, Lipid oxidation in freeze-dried meats, J. Agr. Food Chem., 19: 495.CrossRefGoogle Scholar
  33. Chipault, J. R., Mizuno, G. R., and Lundberg, W. 0., 1956, The antioxidant properties of spices in foods, Food Technol., 10: 209.Google Scholar
  34. Chou, H. E., Acott, K. M., and Labuza, T. P., 1973, Sorption hysteresis and chemical reactivity, J. Food Sci., 38: 316.CrossRefGoogle Scholar
  35. Cornell, D. G., DeVilbiss, E. D., and Pallansch, M. J., 1970, Partition coefficients of some antioxidants in butteroil-water model systems, J. Dairy Sci., 53: 529.CrossRefGoogle Scholar
  36. Cort, W. M., 1974, Antioxidant activity of tocopherols, ascorbyl palmitate and ascorbic acid and their mode of action, JAOCS, 51: 321.CrossRefGoogle Scholar
  37. Cort, W. M., Mergens, W., and Greene, A., 1978, Stability of a-and y-tocopherol: Fe3+ and Cut+ interactions, J. Food Sci., 43: 797.CrossRefGoogle Scholar
  38. Cort, W. M., Scott, J. W., Araujo, M., Mergens, W. J., Cannalonga, M. A., Osadca, M., Harley, H., Parrish, D. R., and Pool, W. R., 1975, Antioxidant activity and stability of 6-hydroxy-,5,7,8tetramethyl chroman-2-carboxylic acid, JAOCS, 52: 174.CrossRefGoogle Scholar
  39. Cross, J. W., Briggs, W. R., Dohrmann, U. C., and Ray, P. M., 1978, Auxin receptors of maize coleoptile membranes do not have ATPase activity, Pl. Physiol., 61: 581.CrossRefGoogle Scholar
  40. De Boland, A. R., Garner, G. B., and O’Dell, B. L., 1975, Identification and properties of “phytate” in cereal grains and oilseed products, J. Agr. Food Chem., 23: 1186.CrossRefGoogle Scholar
  41. El-Gharbawi, M. L. and Dugan, L. R., Jr., 1965, Stability of nitrogenous compounds and lipids during storage of freeze-dried raw beef, J. Food Sci., 30: 817.CrossRefGoogle Scholar
  42. Emanuel, N. M. and Lyaskovskaya, Y. N., 1965, “The Inhibition of Fat Oxidation Processes,” Pergamon Press, New York.Google Scholar
  43. Erkilla, I., Fung, T., Kandiah, M., Wilkins, J., Moran, J. J., and Blake, J. A., 1978, Study of the accelerated oxidation of low and high erucic rapeseed oil, JAOCS, 55: 303.CrossRefGoogle Scholar
  44. Farag, R. S. and Osman, S. A., 1978a, Cottonseed oil oxidation catalyzed by amino acids and albumin in aqueous and nonaqueous media, JAOCS, 55: 613.CrossRefGoogle Scholar
  45. Farag, R. S., Osman, S. A., Hallabo, S. A. S., and Naar, A. A., 1978b, Linoleic acid oxidation catalyzed by various amino acids and cupric ions in aqueous media, JAOCS, 55: 703.CrossRefGoogle Scholar
  46. Farag, R. S., Osman, S. A., Hallabo, S. A. S., and Naar, A. A., 1978c, Linoleic acid oxidation catalyzed by various amino acids and cupric ions in freeze-dried model systems, JAOCS, 55: 708.CrossRefGoogle Scholar
  47. Fiddler, W., Pensabene, J. W., Piotrowski, E. G., Doerr, R. C., and Wasserman, A. E., 1973, Use of sodium ascorbate or erythorbate to inhibit formation of N-nitroso dimethylamine in frankfurters, J. Food Sci., 38: 1084.CrossRefGoogle Scholar
  48. Fieser, L. F., 1930, Oxidation potentials of amines and phenols, JACS, 52: 5204.CrossRefGoogle Scholar
  49. Food Chemical News, 1978, A. M. I. asks FSQS to withdraw nitrite/sorbate bacon proposal, Food Chem. News, 20: 54 (November 20).Google Scholar
  50. Freeman, L. P., Padley, F. B., and Sheppard, W. L., 1973, Use of silicones in frying oils, JAOCS, 50: 101.CrossRefGoogle Scholar
  51. Friedlander, A. and Sklarz, B., 1971, Catecholic flavonoids from soybean flakes, Experientia, 27: 762.CrossRefGoogle Scholar
  52. Fujimoto, K., Kanno, Y., Kaneda, T., 1978, Antioxidant activity and pungency of capsaicin homologues, Abstract 10–09, Fifth Int. Congr. Food Sci. Technol., Kyoto, Japan, 17–22 Sep. 1978.Google Scholar
  53. Furia, T. E. and Bellanca, N., 1976, Development of new nonabsorbable polymeric antioxidants for use in foods, JAOCS, 53: 132.CrossRefGoogle Scholar
  54. Furia, T. E. and Bellanca, N., 1977, The properties and performance of Poly AOTM-79; a nonabsorbable polymeric antioxidant intended for use in foods, JAOCS, 54: 239.CrossRefGoogle Scholar
  55. Galliard, T., 1968, Identification and quantitative determination of the lipids in potato tubers, Photochem., 7: 1907.CrossRefGoogle Scholar
  56. Gehman, H. and Osman, E. M., 1954, Chemistry of the sugar sulphite reaction and its relation to food problems, Adv. Food Res., 5: 53.CrossRefGoogle Scholar
  57. Geyer, R. P., Saslaw, J., and Hare, F. J., 1955, Studies on the oxygen uptake of fat emulsions used in intravenous alimentation. JACS, 32: 528.CrossRefGoogle Scholar
  58. Goldblith, S. A., Karel, M., and Lusk, G., 1963, The role of food science and technology in the freeze-dehydration of foods. Food Technol., 17: 139.Google Scholar
  59. Graham, W. D. and Grice, H. C., 1955, Chronic toxicity of bread additives to rats, II, J. Pharm. Pharmacol., 7: 126.CrossRefGoogle Scholar
  60. Grams, G. W. and Eskins, K., 1972, Dye-sensitized photooxidation of tocopherols. Correlation between singlet oxygen reactivity and vitamin E activity, Biochem., 11: 606.Google Scholar
  61. Grams, G. W., Eskins, K., and Inglett, G. E., 1972, Dye-sensitized photooxidation of a-tocopherol, JACS, 94: 866.CrossRefGoogle Scholar
  62. Greene, B. E., 1969, Lipid oxidation and pigment changes in raw beef, J. Food Sci., 34: 110.CrossRefGoogle Scholar
  63. Greene, B. E., 1971, Retardation of oxidative color changes in raw ground beef, J. Food Sci., 36: 940.CrossRefGoogle Scholar
  64. Gregariadis, G., 1978, Liposomes in therapeutic and preventive medicine: The development of the drug-carrier concept, in: “Liposomes and Their Uses in Biology and Medicine,” D. Papahadjopoulis, ed., Annals of New York Academy of Sci., 308: 343, New York Acad. Sci., New York, NY.Google Scholar
  65. Griffith, W. C., 1954, Title unavailable, J. Soc. Cosmetic Chem., 5: 249.Google Scholar
  66. Gyorgy, P., Murata, K. and Ikehata, H., 1964, Antioxidants isolated from fermented soybeans (tempeh), Nature, 203: 870.CrossRefGoogle Scholar
  67. Gyorgy, P., Murata, K., and Sugimoto, Y., 1974, Studies on antioxidant activity of tempeh oil, JAOCS, 51: 377.CrossRefGoogle Scholar
  68. Haase, G. and Dunkley, W. L., 1969a, Ascorbic acid and copper in linoleate oxidation. 2. Ascorbic acid and copper as oxidation catalysts, J. Lipid Res., 10: 561.Google Scholar
  69. Haase, G. and Dunkley, W. L., 1969b, Ascorbic acid and copper in linoleate oxidation. 3. Catalysts in combination, J. Lipid Res., 10: 568.Google Scholar
  70. Hall, J. L. and Mackintosh, D. L., 1964, Chlorophyll catalysis of fat peroxidation, J. Food Sci., 29: 420.CrossRefGoogle Scholar
  71. Hall, R. L., 1975, GRAS: Concept and applications, Food Technol., 29: 48.Google Scholar
  72. Hamilton, J. W. and Tappel, A. L., 1963, Evaluation of antioxidants by a rapid polarographic method, JAOCS, 40: 52.CrossRefGoogle Scholar
  73. Hamm, D. L., Hammond, E. G., and Hotchkiss, D. K., 1967, Effect of temperature on rate of autoxidation of milk fat, J. Dairy Sci., 51: 483.CrossRefGoogle Scholar
  74. Hannan, R. S. and Shepherd, H. J., 1952, An after-effect in butterfat irradiated with high energy electrons, Nature, 170: 1021.CrossRefGoogle Scholar
  75. Hayes, R. E., Bookwalter, G. N., and Bagley, E. B., 1977, Antioxidant activity of soybean flour and derivatives - a review, J. Food Sci., 42: 1527.CrossRefGoogle Scholar
  76. Hodge, J. E., 1953, Browning reactions in model systems, J. Agr. Food Chem., 1: 928.CrossRefGoogle Scholar
  77. Hodge, J. E., 1967, Origin of flavor in foods. Non-enzymatic browning reactions, in: “Symposium on Foods: Chemistry and Physiology of Flavors. Non-enzymatic Browning Reactions,” H. W. SchultzGoogle Scholar
  78. E. A. Day, and L. M. Libbey, eds., Avi Publ. Co., Westport, CT, p. 465.Google Scholar
  79. Honn, F. J., Bezman, I. I., and Daubert, B. F., 1951, Autoxidation of drying oils adsorbed on porous solids, JAOCS, 28: 129.CrossRefGoogle Scholar
  80. Horn, L. R., Barker, M. O., Reed, G., and Brin, M., 1974, Studies on peroxidative hemolysis and erythrocyte fatty acids in the rabbit: Effect of dietary polyunsaturated fatty acids and vitamin E., J. Nutr., 104: 192.Google Scholar
  81. Ikeda, N. and Fukuzumi, K., 1977, Synergistic antioxidant effect of nucleic acids and tocopherols, JAOCS, 54: 360.CrossRefGoogle Scholar
  82. Ikeda, N. and Fukuzumi, K., 1976, Ion exchange resins and ethylenimine polymer as antioxidants. 1. Activity and mechanism, JAOCS, 53: 618.CrossRefGoogle Scholar
  83. Johnson, F. C., 1971, A critical review of the safety of phenolic antioxidants in foods, in: “Critical Reviews in Food Technology,” Vol. 2, T. Furia, ed., CRC Press, Cleveland, OH, p. 267.Google Scholar
  84. Jul, M., 1968, Title unavailable, in: “Low Temperature Biology of Foodstuffs,” Recent Advances in Food Science, Vol. 4, J. Hawthorn and E. J. Rolfe, eds., Pergamon Press, New York.Google Scholar
  85. Kamiya, S., 1960, Title unavailable, Nippon Nogeikagaku Kaishi, 34: 8.CrossRefGoogle Scholar
  86. Kamm, J. J., Dashman, T., Conney, A. H., and Burns, J. J., 1975, Effect of ascorbic acid on amine-nitrite toxicity, Annals of New York Academy Sci., 258:169, Second Conference on Vitamin C, September, New York Academy of Sciences, New York.Google Scholar
  87. Kanner, J., 1979, S-nitrosocysteine (RSNO), an effective antioxidant in cured meat, JAOCS, 56: 74.CrossRefGoogle Scholar
  88. Kanner, J., Mendel, H., and Budowski, P., 1977, Prooxidant and antioxidant effects of ascorbic acid and metal salts in a IS-carotene linoleate model system, J. Food Sci., 42: 60.CrossRefGoogle Scholar
  89. Karel, M., Schaich, K., and Roy, R. B., 1975, Interaction of peroxidizing methyl linoleate with some proteins and amino acids, J. Agr. Food Chem., 23: 159.CrossRefGoogle Scholar
  90. Karel, M., Tannenbaum, S. R., Wallace, D. H., and Maloney, H., 1966, Autoxidation of methyl linoleate in freeze-dried model systems. III. Effects of added amino acids, J. Food Sci., 31: 892.CrossRefGoogle Scholar
  91. Kendrick, J. and Watts, B. M., 1969, Acceleration and inhibition of lipid oxidation by heme compounds, Lipids, 4: 454.CrossRefGoogle Scholar
  92. Khan, T. M. M. and Martell, A. E., 1967, Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen, JACS, 89: 4176.CrossRefGoogle Scholar
  93. Kirleis, A. W. and Stine, C. M., 1978, Retention of synthetic phenolic antioxidants in model freeze-dried systems, J. Food Sci., 43: 1457.CrossRefGoogle Scholar
  94. Koch, S. D., Hyatt, A. A., and Lopiekes, D. V., 1971, Basis of stability of amine salts of linoleic acid. 1. Generality of the oxidation protection and effect of physical state, J. Food Sci., 36: 477.CrossRefGoogle Scholar
  95. Kopelman, I. J., Mizrahi, S., and Schwab, R., 1975, Equilibrium vapor pressure of butylated hydroxyanisole and butylated hydroxytoluene in high temperature oil solution, JAOCS, 52: 103.CrossRefGoogle Scholar
  96. Labuza, T. P., 1971, Kinetics of lipid oxidation in foods, CRC Critical Review in Food Technol., 2: 355.CrossRefGoogle Scholar
  97. Labuza, T. P., Maloney, J. F., and Karel, M., 1966, Autoxidation of methyl linoleate in freeze-dried model systems. II. Effect of water on cobalt-catalyzed oxidation, J. Food Sci., 31: 885.CrossRefGoogle Scholar
  98. Labuza, T. P., Silver, M., Cohn, M., Heidelbaugh, N. D., and Karel, M., 1971, Metal-catalyzed oxidation in the presence of water in foods, JAOCS, 48: 527.CrossRefGoogle Scholar
  99. Lamola, A. A., Yamane, T., and Truzzolo, A. M., 1973, Cholesterol hydroperoxide formation in red cell membranes and photohemolysis in erythropoietic protoprophyria, Sci., 179: 1131.CrossRefGoogle Scholar
  100. Latimer, W. M., 1938, “The Oxidation States of the Elements and Their Potentials in Aqueous Solutions,” Prentice-Hall, Inc., New York.Google Scholar
  101. Lee, A. G., Birdsall, N. J. M., Metcalfe, J. C., Toon, P. A., and Warren, G. B., 1974, Clusters in lipid bilayers and interpretations of thermal effects in biological membranes, Biochem., 13: 3699.CrossRefGoogle Scholar
  102. Lee, S., 1973, “Studies on a Potato-Chip-Like Flavored Oil Generated by Deep Fat Frying of Methionine,” Rutgers Univ., University Microfilm, Ann Arbor, MI.Google Scholar
  103. Levandoski, N. G., Baker, E. M., and Canham, J. E., 1964, A monodehydro form of ascorbic acid in the autoxidation of ascorbic acid to dehydroascorbic acid, Biochem., 3: 1465.CrossRefGoogle Scholar
  104. Lin, J. S., Smith, V., and Olcott, H. S., 1974, Loss of free-radical signal during induction period of unsaturated lipids containing nitroxide antioxidants, J. Agr. Food Chem., 22: 682.CrossRefGoogle Scholar
  105. Lindsay, R. C., Lund, D. B., Branen, A. L., Chang, H. C., Dunnick, S. E., and Steinke, J. A., 1975, Investigation of methods for introducing antioxidants into foods, Technical Report TR 75100-FSL for U.S. Army Natick RD Command, Natick, MA 01760 (AD A022557), U.S. Dept. of Commerce, Natl. Tech. Infor. Service, Springfield, VA 22161, March 1975.Google Scholar
  106. List, G. R., Evans, C. D., and Moser, H. A., 1972, Flavor and oxidative stability of northern-grown sunflower seed oil, JAOCS, 49: 287.CrossRefGoogle Scholar
  107. Luckadoo, B. M. and Sherwin, E. R., 1972, Tertiary butylhydroquinone as antioxidant for crude sunflower seed oil, JAOCS, 49: 95.CrossRefGoogle Scholar
  108. Lundberg, W. O., 1961 and 1962, “Autoxidation and Antioxidants,” Vols. I and I I, W. O. Lundberg, ed., Interscience Publishers, John Wiley and Sons, New York.Google Scholar
  109. Lunde, G., Landmark, L. H., and Gether, J., 1976, Sequestering and exchange of metal ions in edible oils containing phospholipids JAOCS, 53: 207.CrossRefGoogle Scholar
  110. Lyon, C. K., 1972, Sesame: Current knowledge of composition and use, JAOCS, 49: 245.CrossRefGoogle Scholar
  111. McCay, P. B., Gibson, D. D., Fong, K. L., and Hornbrock, K. R., 1976, Effect of glutathione peroxidase activity on lipid peroxidation in biological membranes, Biochim. Biophys. Acta, 431: 459.CrossRefGoogle Scholar
  112. McWeeney, D. J., 1968, Reactions in food systems; negative temperature coefficients, J. Food Technol., 3: 15.CrossRefGoogle Scholar
  113. Maleki, M., 1973, The effect of non-enzymatic browning in the presence of glucose and glycine on the development of rancidity in corn oil, Fette Seifen Anstrichmittel, 75: 103.CrossRefGoogle Scholar
  114. Maloney, J. F., Labuza, T. P., Wallace, D. H., and Karel, M., 1966, Autoxidation of methyl linoleate in freeze-dried model systems. I. Effect of water on the autocatalyzed oxidation, J. Food Sci., 31: 878.CrossRefGoogle Scholar
  115. Manley, O. H. and Fagerson, I. S., 1970, Major volatile neutral and acid components of hydrolyzed soy protein, J. Food Sci., 35: 286.Google Scholar
  116. Marco, G. J., 1968, A rapid method for evaluation of antioxidants, JAOCS, 45: 594.CrossRefGoogle Scholar
  117. Marcuse, R., 1962, The effect of some amino acids on the oxidation of linoleic acid and its methyl ester, JAOCS, 39: 97.CrossRefGoogle Scholar
  118. Mead, J. F. and Wu, G.-S., 1976, The use of fatty acid monolayers as models for biomembranes autoxidation studies, in: “Lipids,” R. Paoletti, G. Porcellati, and G. Jacini, eds., Raven Press, New York, p. 197.Google Scholar
  119. Mergens, W. J., Keating, J. F., Osadca, M., Araujo, M., DeRitter, E., and Newmark, H. L., 1978, Stability of tocopherol in bacon, Food Technol., 32: 40 (November).Google Scholar
  120. Mirvish, S. S., 1975, Blocking the formation of N-nitroso compounds with ascorbic acid in vitro and in vivo, Second Conference on Vitamin C, Annals New York Acad. Sci., 258: 175.CrossRefGoogle Scholar
  121. Mitchell, J. H., Jr. and Henick, A. S., 1962, Rancidity in food products, in: “Autoxidation and Antioxidants,” Vol. II, W. O. Lundberg, ed., Interscience Publications, New York, p. 569.Google Scholar
  122. Moerck, K. E. and Ball, H. R., Jr., 1974, Lipid autoxidation in mechanically deboned chicken meat, J. Food Sci., 39: 876.CrossRefGoogle Scholar
  123. Morrison, W. H., III, Robertson, J. A., and Burdick, D., 1973, Effect of deep-fat frying on sunflower oils, JAOCS, 50: 440.CrossRefGoogle Scholar
  124. Nickerson, J. T. R., 1963, Preservatives and antioxidants, in: “Food Processing Operations,” Vol. II, J. Heid and M. Joslyn, eds., Avi Publishing Co., Westport, CT, p. 218.Google Scholar
  125. O’Brien, P. J. and Rahimtula, A., 1975, Involvement of cytochrome P-450 in the intracellular formation of lipid peroxides, J. Agr. Food Chem., 23: 154.CrossRefGoogle Scholar
  126. Olcott, H. S. and Mattill, H. A., 1936, Antioxidants and the autoxidation of fats. VII. Preliminary classification of inhibitors, JACS, 58: 2204.Google Scholar
  127. Olcott, H. S. and J. Van der Veen, 1963, Role of individual phospholipids as antioxidants, J. Food Sci., 28: 313.CrossRefGoogle Scholar
  128. Olson, D. G. and Rust, R. E., 1973, Oxidative rancidity in dry-cured hams: Effect of low pro-oxidant and antioxidant salt formulation, J. Food Sci., 38: 251.CrossRefGoogle Scholar
  129. Parkhurst, R. M., Skinner, W. A., and Strum, P. A., 1969, The effect of various concentrations of tocopherols and tocopherol mixtures on the oxidative stability of a sample of lard, JAOCS, 45: 641.Google Scholar
  130. Pearson, A. M., Love, J. D., and Shorland, F. B., 1977, “Warmed-over” flavor in meat, poultry, and fish, Adv. Food Res., 23:1.Google Scholar
  131. Porter, W. L., 1962, Molecular structure and auxin activity: the fourth specificity requirement for auxin action, Ph.D. Thesis, Harvard University, Cambridge, MA.Google Scholar
  132. Porter, W. L., Wetherby, A. M., and Kapsalis, J. G., 1979, unpublished data.Google Scholar
  133. Porter, W. L., Colgan, R., Paradis, A., and Porfert, G., 1976, Synthesis and testing of antioxidants designed for membrane protection, Abstract 67th Annual Spring Meeting, AOCS, 21–24 April, New Orleans, LA, JAOCS.Google Scholar
  134. Porter, W. L., Henick, A. S., Murphy, F., Colgan, R., and Porfert, G., 1978, Autoxidation and effects of pro-and antioxidants in lyophilized red blood cell membranes, Lipids, 13: 137.CrossRefGoogle Scholar
  135. Porter, W. L., Henick, A. S., Jeffers, J. I., and Levasseur, L. A., 1971b, A method of ultraviolet spectrophotometry of lipid mono-layers on silica gel, Lipids, 6: 9.CrossRefGoogle Scholar
  136. Porter, W. L., Henick, A. S., and Levasseur, L. A., 1973, Addition compounds of oxidizing tocopherol and soybean lecithin, Lipids, 8: 31.CrossRefGoogle Scholar
  137. Porter, W. L., Levasseur, L. A., and Henick, A. S., 1972, Effects of surface concentration, metals and acid synergists on autoxidation of linoleic acid monolayers on silica, Lipids, 7: 699.CrossRefGoogle Scholar
  138. Porter, W. L., Levasseur, L. A., and Henick, A. S., 1977, Evaluation of some natural and synthetic phenolic antioxidants in linoleic acid monolayers on silica, J. Food Sci., 42: 1533.CrossRefGoogle Scholar
  139. Porter, W. L., Levasseur, L. A., and Henick, A. S., 1971a, An addition compound of oxidized tocopherol and linoleic acid, Lipids, 6: 1.CrossRefGoogle Scholar
  140. Porter, W. L., Levasseur, L. A., Jeffers, J. I., and Henick, A. S., 1971c, Ultraviolet spectrophotometry of autoxidized lipid monolayers while on silica gel, Lipids 6: 16.CrossRefGoogle Scholar
  141. Pratt, D. E., 1972, Water soluble antioxidant activity in soybeans, J. Food Sci., 37: 322.CrossRefGoogle Scholar
  142. Rackis, J., 1974, Biological and physiological factors in soybeans, JAOCS, 51: 161A.Google Scholar
  143. Ragnarsson, J. 0., 1977, “Accelerated Temperature Shelf Life Testing of Antioxidants in Dehydrated and Intermediate Moisture Systems,” Ph.D. Thesis, Univ. of Minnesota, Minneapolis, MN, 1976, University Microfilms International, Ann Arbor, MI.Google Scholar
  144. Ragnarsson, J. O. and Labuza, T. P., 1977, Accelerated shelf-life testing for oxidative rancidity in foods - a review, Food Chem., 2: 291.CrossRefGoogle Scholar
  145. Ragnarsson, J. O., Leick, D., and Labuza, T. P., 1977, Accelerated temperature study of antioxidants, J. Food Sci., 42: 1536.Google Scholar
  146. Reeve, R. M., 1942, Facts of vegetable dehydration revealed by microscope, Food Industries, 14:51 and 14: 107.Google Scholar
  147. Reeve, R. M., 1943a, Microscopy of the oils and carotene bodies in dehydrated carrots, Food Res., 8: 137.CrossRefGoogle Scholar
  148. Reeve, R. M., 1943b, Change in tissue composition in dehydration of certain fleshy root vegetables, Food Res., 8: 146.CrossRefGoogle Scholar
  149. Riemenschneider, R. W., 1955, Oxidative rancidity and antioxidants, in: “Handbook of Food and Agriculture,” F. C. Blanck, ed., Reinhold Press, NY.Google Scholar
  150. Rock, S. P. and Roth, H., 1964, Factors affecting the rate of deterioration in the frying quality of fats. II. Type of heater and method of heating, JAOCS, 41: 531.CrossRefGoogle Scholar
  151. Rock, S. P., Fischer, L., and Roth, H., 1967, Methyl silicone in frying fats - Antioxidant or pro-oxidant, JAOCS, 44: 102A.Google Scholar
  152. Roth, H. and Rock, S. P., 1972, The chemistry and technology of frying fat. I. Chemistry, Bakers Digest, 46: 38 (August 1978).Google Scholar
  153. Roth, H. and Rock, S. P., 1972, The chemistry and technology of frying fat. II. Technology, Bakers Digest, 46: 38 (October 1978).Google Scholar
  154. Sato, K. and Hegarty, G. R., 1971, Warmed-over flavor in cooked meats, J. Food Sci., 36: 1098.CrossRefGoogle Scholar
  155. Sato, K., Hegarty, G. R., and Herring, H. K., 1973, The inhibition of warmed-over flavors in cooked meats, J. Food Sci., 38: 398.CrossRefGoogle Scholar
  156. Schultz, H. W., Day, E. A., and Sinnhuber, R. 0., 1962, “Lipids and Their Oxidation,” H. W. Schultz, E. A. Day, and R. O. Sinnhuber, eds., Symposium on Foods, Oregon State Univ., 1961, Avi Publishing Co., Inc. Scott, G., 1965, “Atmospheric Oxidation and Antioxidants,” Elsevier Publishing Co., New York.Google Scholar
  157. Scott, J. W., Cort, W. M., Harley, H., Parrish, D. R. and Saucy, G., 1974, 6-hydroxychroman-2-carboxylic acids: novel antioxidants, JAOCS, 51: 200.Google Scholar
  158. Shamberger, R. J., Baughman, F. F., Kalchert, S. L., Willis, C. E., and Hoffman, G. C., 1973, Carcinogen-induced chromosomal breakage decreased by antioxidants, Proc. Natl. Acad. Sci., 70: 1461.CrossRefGoogle Scholar
  159. Shelton, J. R. and Vincent, D., 1963, Retarded autoxidation and the chain-stopping action of inhibitors, JACS, 85: 2433.CrossRefGoogle Scholar
  160. Sherwin, E. R., 1972, Antioxidants for food fats and oils, JAOCS, 49: 4681.Google Scholar
  161. Sherwin, E. R., 1976, Antioxidants for vegetable oils, JAOCS, 53: 430.CrossRefGoogle Scholar
  162. Sherwin, E. R., 1978, Oxidation and antioxidants in fat and oil processing, JAOCS, 55: 809.CrossRefGoogle Scholar
  163. Sims, R. J. and Fioriti, J. A., 1977, Methional as an antioxidant for vegetable oils, JAOCS, 54: 4.CrossRefGoogle Scholar
  164. Sims, R. J., Fioriti, J. A., and Kanuk, M. J., 1972, Sterol additives as polymerization inhibitors for frying oils, JAOCS, 49: 298.CrossRefGoogle Scholar
  165. Siu, G. M. and Draper, H. H., 1978, A survey of the malonaldehyde content of retail meats and fish, J. Food Sci., 43: 1147.CrossRefGoogle Scholar
  166. Skinner, W. A. and Parkhurst, R. M., 1970, Antioxidant properties of a-tocopherol derivatives and relationship of antioxidant activity to biological activity, Lipids, 5: 184.CrossRefGoogle Scholar
  167. Slawson, V. and Mead, J. F., 1972, Stability of unsaturated methyl esters of fatty acids on surfaces, J. Lipid Res., 13: 143.Google Scholar
  168. Slawson, V., Adamson, A. W., and Mead, J. F., 1973, Autoxidation of polyunsatured fatty esters on silica, Lipids, 8: 129.CrossRefGoogle Scholar
  169. Soimajarvi, J. and Linko, R. R., 1973, Lipids in carrot roots. I. The purification of crude lipids and the composition of neutral lipids, Acta Chem. Scand., 27: 1053.CrossRefGoogle Scholar
  170. Song, P. S. and Chichester, C. O., 1967, Kinetic behavior and mechanism of inhibition in the Maillard reaction, J. Food Sci., 32: 98.CrossRefGoogle Scholar
  171. Sosulski, F. and Fleming, S. E., 1977, Chemical, functional, and nutritional properties of sunflower protein products, JAOCS, 54: 100A.Google Scholar
  172. Stuckey, B., 1968, Antioxidants as food stabilizers, in: “Handbook of Food Additives,” T. Furia, ed., Chem. Rubber Co., Cleveland, OH, p. 209.Google Scholar
  173. Symposium, 1979, Basic symposium on “Food Lipids,” Institute of Food Technologists, St. Louis, MO, June, 1979.Google Scholar
  174. Takasago, M., Horikawa, K., and Masuyama, S., 1976, Studies on derivatives of aromatic hydroxycarboxylic acids as antioxidants. I. The preparation of galloyl glycerol derivative and its antioxidant activity, Yukagaku, 25: 16.Google Scholar
  175. Tappel, A. L., Brown, W. D., Zalkin, H., and Maier, V. P., 1961, Unsaturated lipid peroxidation catalyzed by hematin compounds and its inhibition by Vitamin E, JAOCS, 38: 5.CrossRefGoogle Scholar
  176. Thompson, S. G., 1978, Effect of soy protein flakes and added water on microbial growth and rancidity in fresh ground beef, J. Food Sci., 43: 289.CrossRefGoogle Scholar
  177. Thompson, J. W. and Sherwin, E. R., 1966, Investigation of antioxidants for polyunsaturated edible oils, JAOCS, 43: 683.CrossRefGoogle Scholar
  178. Tjio, K. H., Labuza, T. P., and Karel, M., 1969, Effects of humidification and activity of catalysts and antioxidants in model systems, JAOCS, 46: 597.CrossRefGoogle Scholar
  179. Tompkin, R. B., Christiansen, L. N., and Shaparis, A. B., 1978, Antibotulinal role of isoascorbate in cured meat, J. Food Sci., 43: 1368.CrossRefGoogle Scholar
  180. Uri, N., 1958, The mechanism of the oxidation of linoleic acid with particular reference to metal catalysis. Fourth Internatl. Conference on the Biochemical Problems of Lipids, Butterworths Sci. Publications, London.Google Scholar
  181. Uri, N., 1961, Mechanism of antioxidation, in: “Autoxidation and Antioxidants,” W. O. Lundberg, ed., Vol. I., Interscience Publications, New York, p. 133.Google Scholar
  182. Uri, N., 1970, Some aspects of thermal and photochemical oxidation, Israel J. of Chem., 8: 125.Google Scholar
  183. Van Esch, G. J., 1955, Studies on the toxicity of propyl, octyl and dodecyl gallate, Voeding, 16: 683.Google Scholar
  184. Watts, B. M., 1961, The role of lipid oxidation in lean tissues in flavor deterioration of meat and fish, in: “Proceedings of Flavor Chemistry Symposium,” Campbell Soup Co., Camden, NJ, p. 83.Google Scholar
  185. Watts, B. M., 1962, Meat products, in: “Lipids and Their Oxidation,” H. W. Schultz, E. A. Day, and R. O. Sinnhuber, eds., Chapter 11, Avi Publishing Co., Westport, CT, p. 202.Google Scholar
  186. Weddle, C. C., Hornbrook, K. R., and McCay, P. B., 1976, Lipid peroxidation and alteration of membrane lipids in isolated hepatocytes exposed to carbon tetrachloride, J. Biol. Chem., 251: 4973.Google Scholar
  187. Wilson, B. R., Pearson, A. M., and Shorland, F. B., 1976, Effect of total lipids and phospholipids on warmed-over flavor in red and white muscle from several species as measured by thiobarbituric acid analysis, J. Agr. Food Chem., 24: 7.CrossRefGoogle Scholar
  188. Witting, L. A., 1975, Vitamin E as a food additive, JAOCS, 52: 64.Google Scholar
  189. Wu, G.-S. and Mead, J. F., 1977, Autoxidation of fatty acid monolayers adsorbed on silica gel: 1. Nature of adsorption sites, Lipids, 12: 965.CrossRefGoogle Scholar
  190. Wu, G.-S., Stein, R. A., and Mead, J. F., 1977, Autoxidation of fatty acid monolayers adsorbed on silica gel. II. Rates and products, Lipids, 12: 971.CrossRefGoogle Scholar
  191. Yong, S. H. and Karel, M., 1978, Reaction of histidine with methyl linoleate: Characterization of the histidine degradation products, JAOCS, 55: 352.CrossRefGoogle Scholar
  192. Yuki, E. and Ishikawa, Y., 1976, Tocopherol content of nine vegetable frying oils and their changes under simulated deep-fat frying conditions, JAOCS, 53: 673.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • William L. Porter
    • 1
  1. 1.Food Sciences LaboratoryU.S. Army Natick Research & Development CommandNatickUSA

Personalised recommendations