Physiology of the Developing Auditory System

  • J. J. Eggermont
Part of the Advances in the Study of Communication and Affect book series (ASCA, volume 10)


The auditory system as a whole can only be studied by behavioral tests. When we speak of hearing, we are considering something that leads to a motor response, either an orientation toward the sound source or an answer to it. Hearing involves localization and identification of the sound. Electrophysiological methods can never describe the system completely, since it is impossible to determine with these methods whether a sound was actually heard. Thus, an electrophysiologically normal system is a necessary condition for normal hearing, but it is not a sufficient condition. Depending on the recording site, one can only test the system up to that point. By testing various stations along the auditory pathway, one may obtain time courses of development at all these points. This allows one, for example, to distinguish between maturation at the cochlear level and maturation of the central nervous system.


Acoustical Society Auditory System Auditory Nerve Inferior Colliculus Cochlear Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitkin, L. M., & Moore, D. R. Inferior colliculus. II. Development of tuning characteristics and tonotopic organization in central nucleus of the neonatal cat. Journal of Neurophysiology, 1975, 38, 1208–1216.PubMedGoogle Scholar
  2. Akiyama, Y., Schulte, F. J., Schultz, M. A., & Parmelee, A. H. Acoustically evoked responses in premature and full term newborn infants. Electroencephalography and Clinical Neurophysiology, 1969, 26, 371–380.PubMedCrossRefGoogle Scholar
  3. Barnet, A. B., Ohlrich, E. S., Weiss, I. P., & Shanks, B. Auditory evoked potentials during sleep in normal children from ten days to three years of age. Electroencephalography and Clinical Neurophysiology, 1975, 39, 29–41.PubMedCrossRefGoogle Scholar
  4. Brugge, J. F., Javel, E., & Kitzes, L. M. Signs of functional maturation of peripheral auditory system in discharge patterns of neurons in anteroventral cochlear nucleus of kitten. Journal of Neurophysiology, 1978, 41, 1557–1579.PubMedGoogle Scholar
  5. Carlier, E., Abonnenc, M., & Pujol, R. Maturation des réponses unitaires à la stimulation tonale dans le nerf cochléaire du chaton. Journal de Physiologie (Paris), 1975, 70, 129–138.Google Scholar
  6. Carlier, E., Lenoir, M., & Pujol, R. Development of cochlear frequency selectivity tested by compound action potential tuning curves. Hearing Research, 1979, 1, 197–201.CrossRefGoogle Scholar
  7. Carlier, E., & Pujol, R. Role of inner and outer haircells in coding sound intensity: An ontogenetic approach. Brain Research, 1978, 147, 174–176.PubMedCrossRefGoogle Scholar
  8. Cox, C., Hack, M., & Metz, D. Brainstem-evoked response audiometry: Normative data from the preterm infant. Audiology, 1981, 20, 53–64.PubMedCrossRefGoogle Scholar
  9. Dallos, P., & Cheatham, M. A. Compound action potential (AP) tuning curves. Journal of the Acoustical Society of America, 1976, 59, 591–597.PubMedCrossRefGoogle Scholar
  10. Don, M., & Eggermont, J. J. Analysis of click-evoked brainstem potentials in man using high-pass noise masking. Journal of the Acoustical Society of America, 1978, 63, 1084–1092.PubMedCrossRefGoogle Scholar
  11. Eggermont, J. J. Analysis of compound action potential responses to tonebursts in the human and guinea pig cochlea. Journal of the Acoustical Society of America, 1976, 60, 1132–1139.PubMedCrossRefGoogle Scholar
  12. Eggermont, J. J. Compound action potential turning curves in normal and pathological human ears. Journal of the Acoustical Society of America, 1977, 62, 1247–1251.PubMedCrossRefGoogle Scholar
  13. Eggermont, J. J. Narrow-band AP latencies in normal and recruiting human ears. Journal of the Acoustical Society of America, 1979, 65, 463–470.PubMedCrossRefGoogle Scholar
  14. Eggermont, J. J., & Don, M. Analysis of click-evoked brainstem potentials in humans using high-pass noise masking. II. Effect of click intensity. Journal of the Acoustical Society of America, 1980, 68, 1671–1675.PubMedCrossRefGoogle Scholar
  15. Evans, E. F. The sharpening of cochlear frequency selectivity in the normal and abnormal cochlea. Audiology, 1975, 14, 419–442.PubMedCrossRefGoogle Scholar
  16. Fabiani, M., Sohmer, H., Tait, C., Gafni, M., & Kinarti, R. A functional measure of brain activity: Brainstem transmission time. Electroencephalography and Clinical Neurophysiology, 1979, 47, 483–491.PubMedCrossRefGoogle Scholar
  17. Fernadez, C., & Hinojosa, R. Postnatal development of endocochlear potential and stria vascularis in the cat. Acta Oto-laryngologica (Stockholm), 1974, 78, 173–186.CrossRefGoogle Scholar
  18. Gafni, M., Sohmer, H., Gross, S., Weizman, Z., & Robinson, M. Analysis of auditory nerve brainstem responses (ABR) in neonates and very young infants. Archives of Otorhinolaryngology, 1980, 229, 167–174.CrossRefGoogle Scholar
  19. Goldstein, R., & McRandle, C. C. Middle components of the averaged electroencephalic response to clicks in neonates. In S. E. Hirsh, D. H. Eldridge, I. J. Hirsh, & S. R. Silverman (Eds.), Hearing and Davis: Essays honoring Hallowell Davis. St. Louis: Washington University Press, 1976.Google Scholar
  20. Hecox, K., & Galambos, R. Brainstem auditory evoked responses in human infants and adults. Archives of Otolaryngology, 1974, 99, 30–33.PubMedCrossRefGoogle Scholar
  21. Javel, E. Neurophysiological correlates of auditory maturation. Annals of Otology, Rhinology and Laryngology, 1980, 89 (Suppl. 74) 103–113.Google Scholar
  22. Kiang, N. Y. S., Watanabe, T., Thomas, E. C., & Clark, L. F. Discharge patterns of single fibers in the cats auditory nerve. Cambridge: M.I.T. Press, 1965.Google Scholar
  23. Mendelson, T., & Salamy, A. Maturational effects on the middle components of the averaged electroencephalic response. Journal of Speech and Hearing Research, 1981, 24, 140–144.PubMedGoogle Scholar
  24. Moore, D. R., & Irvine, D. R. F. The development of some peripheral and central auditory responses in the neonatal cat. Brain Research, 1979, 163, 49–59.CrossRefGoogle Scholar
  25. Moore, D. R., & Irvine, D. R. F. Development of binaural input, response patterns, and discharge rate in single units of the cat inferior colliculus. Experimental Brain Research,1980, 38,103108.Google Scholar
  26. Moore, D. R., & Irvine, D. R. F. Development of responses to acoustic interaural intensity dif- ferences in the cat inferior colliculus. Experimental Brain Research, 1981, 41, 301–309.CrossRefGoogle Scholar
  27. Ohlrich, E. S., Barnet, A. B., Weiss, I. P., & Shanks, B. L. Auditory evoked potential development in early childhood: A longitudinal study. Electroencephalography and Clinical Neurophysiology, 1978, 44, 441–423.Google Scholar
  28. Ornitz, E. M., Ritvo, E. R., Lee, Y. H., Panman, L. M., Walter, R. D., & Mason, A. The auditory evoked response in babies during REM sleep. Electroencephalography and Clinical Neurophysiology, 1969, 27, 195–198.PubMedCrossRefGoogle Scholar
  29. Pujol, R. Développement des réponses à la stimulation sonore dans le colliculus inférieur chez le chat. Journal de Physiologie (Paris), 1969, 61, 411–421.Google Scholar
  30. Pujol, R. Development of toneburst responses along the auditory pathway in the cat. Acta Otolaryngologica (Stockholm), 1972, 74, 383–391.CrossRefGoogle Scholar
  31. Purves, D., & Lichtman, J. W. Elimination of synapses in the developing nervous system. Science, 1980, 210, 153–157.PubMedCrossRefGoogle Scholar
  32. Riggs, D. S. The mathematical approach to physiological problems. Cambrige: M.I.T. Press, 1970. Robertson, D., & Manley, G. A. Manipulation of frequency analysis in the cochlear ganglion of the guinea pig. Journal of Comparative Physiology, 1974, 91, 363–375.CrossRefGoogle Scholar
  33. Romand, R. Maturation des potentiels cochléaires dans la période périnatale chez le chat et chez le cobaye. Journal de Physiologie (Paris), 1971, 63, 763–782.Google Scholar
  34. Romand, R. Development of auditory nerve activity in kittens. Brain Research, 1979, 173, 554–556.PubMedCrossRefGoogle Scholar
  35. Romand, R., Granier, M. R., & Marty, R. Développement postnatal de l’activité provoquée dans l’olive supérieure latérale chez le chat parla stimulation sonore. Journal de Physiologie (Paris), 1973, 66, 303–315.Google Scholar
  36. Romand, R., & Marty, R. Postnatal maturation of the cochlear nuclei in the cat: A neurophysiological study. Brain Research, 1975, 83, 225–233.PubMedCrossRefGoogle Scholar
  37. Rubel, E. W. Ontogeny of structure and function in the vertebrate auditory system. In M. Jacobson (Ed.), Handbook of sensory physiology (Vol. 9 ). New York: Springer Verlag, 1978.Google Scholar
  38. Ruben, R. J., & Rapin, I. Plasticity of the developing auditory system. Annals of Otology, Rhinology and Laryngology, 1980, 89, 303–311.Google Scholar
  39. Salamy, A., & McKean, C. M. Postnatal development of human brainstem potentials during the first year of life. Electroencephalography and Clinical Neurophysiology, 1976, 40, 418–426.PubMedCrossRefGoogle Scholar
  40. Saunders, J. C., Dolgin, K. G., & Lowry, L. D. The maturation of frequency selectivity in C57BL/6J mice studied with auditory evoked response tuning curves. Brain Research, 1980, 187, 69–79.PubMedCrossRefGoogle Scholar
  41. Shah, S. N., & Salamy, A. Auditory-evoked far-field potentials in myelin deficient mutant quaking mice. Neuroscience, 1980, 5, 2321–2323.PubMedCrossRefGoogle Scholar
  42. Shah, S. N., Bhargava, V. K., & McKean, C. M. Maturational changes in early auditory evoked potentials and myelination of the inferior colliculus in rats. Neuroscience, 1978, 3, 561–563.PubMedCrossRefGoogle Scholar
  43. Shipley, C., Buckwald, J. S., Norman, R., & Guthrie, D. Brainstem auditory evoked response development in the kitten. Brain Research, 1980, 182, 313–326.PubMedCrossRefGoogle Scholar
  44. Shnerson, A., & Willott, J. F. Development of inferior colliculus response properties in C57BL/6J mouse pups. Experimental Brain Research, 1979, 37, 373–385.CrossRefGoogle Scholar
  45. Starr, A., Amlie, R. N., Martin, W. H., & Sanders, S. Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics, 1977, 60, 831–839.PubMedGoogle Scholar
  46. Taguchi, K., Picton, T. W., Orpin, J. A., & Goodman, W. S. Evoked response audiometry in newborn infants. Acta Oto-laryngologica. Supplementum (Stockholm), 1969, 252, 5–17.CrossRefGoogle Scholar
  47. Uziel, A., Marot, M., & Germain, M. Les potentiels évoqués du nerf auditif et du tronc cérébral chez le nouveau-né et l’enfant. Revue de Laryngologie (Bordeaux), 1980, 101, 55–71.Google Scholar
  48. Walsh, E. J., McGee, J., & Javel, E. Development of BSER in kittens: Evidence for different central and peripheral maturation rates. Journal of the Acoustical Society of America, 1981, 69, S84, (Suppl. 1).Google Scholar
  49. Willot, J. F., & Shnerson, A. Rapid development of tuning characteristics of inferior colliculus neurons of mouse pups. Brain Research, 1978, 148, 230–233.CrossRefGoogle Scholar
  50. Yost, W. A., & Nielson, D. W. Fundamentals of hearing. New York: Holt, Rinehart & Winston, 1977.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • J. J. Eggermont
    • 1
  1. 1.Department of Medical Physics and BiophysicsUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations