The Anatomy of the Developing Ear

  • Goran Bredberg
Part of the Advances in the Study of Communication and Affect book series (ASCA, volume 10)


The gross anatomy of the ear is shown in Figure 1. The ear is essentially a mechanical transducer of sound. Sound entering the external auditory canal vibrates the tympanic membrane or eardrum. The ossicles of the middle ear translate this vibratory motion of the eardrum into a pistonlike movement of the stapes at the oval window of the cochlea. The motion of the footplate of the stapes initiates a traveling wave along the basilar membrane of the cochlea. Distortion of the basilar membrane, in turn, exerts a shearing force on the hair cells, eventually leading to impulses along the eighth auditory nerve. Clearly then, auditory information processing will depend on, or at least be limited by, the mechanics of this system both at a gross-anatomical level (the resonance characteristics of the external auditory canal, the acoustic impedances of the various mechanical systems, etc.) and microanatomical level (the electrical and mechanical characteristics of the hair cells and supporting structures). Consequently, we might expect anatomical development to influence or limit how infants respond to sounds.


Hair Cell Outer Hair Cell External Auditory Canal Fluid Space Tectorial Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, G. Entwichlungsgeschichte, Anthropologie, Varietaten. In A. Denker & O. Kahler (Eds.), Handbuch der Hals- Nasen- Ohren- Heilkunde, (Vol. 6 ). Berlin: Springer Verlag, 1926.Google Scholar
  2. Änggârd, L. An electrophysiological study of the development of cochlear functions in the rabbit. Acta Oto-laryngologica. (Stockholm), Supplementum 203, 1965, 1–64.Google Scholar
  3. Anson, B. J. The early development of the membranous labyrinth in mammalian embryos, with special reference to the endolymphatic duct and utriculo-endolymphatic duct. Anatomical Record, 1934, 58, 127–137.CrossRefGoogle Scholar
  4. Bast, T., & Anson, B. J. The temporal bone and the ear. Springfield, Ill.: Charles C Thomas, 1949. Bechterew, W. Uber die innere Abteilung des Strichkorpers und des achten Himnerven. Neurologisches Centralblatt, 1885, 3, 145–147.Google Scholar
  5. Bredberg, G. Cellular pattern and nerve supply of the human organ of Corti. Acta Oto-laryngologica. (Stockholm), Supplementum 236, 1968, 1–135.Google Scholar
  6. Bredberg, G., Ades, H. W., & Engstrom, H. Scanning electron microscopy of the normal and pathologically altered organ of Corti. Acta Oto-laryngologica. (Stockholm), Supplementum, 301, 1972, 3–48.Google Scholar
  7. Cajal, S. Ramon y. Accion neurotropica de los epitelios. Trabajos des Instituto Cajal de Investigaciones, Biologicas, 1919, 17, 181.Google Scholar
  8. Cajal, S. Ramon y: Studies on vertebrate neurogenesis. The mechanism of development of intra-epithelial sensory and special sense nerve terminations. Springfield, Ill.: Charles C Thomas, 1960.Google Scholar
  9. Crowley, D. E., & Hepp-Reymond, M. -C. Development of cochlear function in the ear of the infant rat. Journal of Comparative Physiological Psychology, 1966, 62, 427–432.CrossRefGoogle Scholar
  10. Davis, H. Hearing and deafness: A guide for laymen. New York: Murray Hill, 1947.Google Scholar
  11. Fleischer, K. Untersuchungen zur Entwicklung der Innenohrfunktion (intrauterine Kindsbewegungen nach Schallreizen), Ztschr. Laryngologie, Rhinologie, Otologie, 1955, 34, 733–740.Google Scholar
  12. Held, H. Die cochlea der Sauger und der Vogel, ihre Entwicklung und ihr Bau. In A. Bethe (Ed.), Handbuch der normalen und pathologischen Physiologie. (Vol. 11). Rezeptionsorgane, 1926, pp. 467–541.Google Scholar
  13. Igarashi, Y., & Ishii, T. Embryonic development of the human organ of Corti. Electron microscopic study. International Journal of Pediatric Otorhinolaryngology, 1980, 2, 51–62.PubMedCrossRefGoogle Scholar
  14. Johansson, B., Wedenberg, E., & Westin, B. Measurement of tone response by the human foetus. A preliminary report. Acta Oto-laryngologica (Stockholm), 1964, 57, 188–192.CrossRefGoogle Scholar
  15. Kikuchi, K., & Hilding, D. The development of the organ of Corti in the mouse. Acta Otolaryngologica (Stockholm), 1965, 60, 207–222.CrossRefGoogle Scholar
  16. Kolmer, W. Gehörorgan. In W. Möllendorff (Ed.), Handbuch der mikroskopischen Anatomie des Menschen (Vol. 3 ). Berlin: Springer Verlag, 1927.Google Scholar
  17. Larsell, O., McCrady, E., & Larsell, J. F. The development of the organ of Corti in relation to the inception of hearing. Archives of Otolaryngology (Chicago), 1944, 40, 233–248.CrossRefGoogle Scholar
  18. Lorente de No, R. Etudes sur l’anatomie et la physiologie du labyrinthe de l’oreille et du VIIIe nerf. Trabajos del Institute Cajal de Investigaciones Biologicas, 1926, 24, 53–153.Google Scholar
  19. Lorente de No, R. Anatomy of the eighth nerve. Central projections of the nerve endings of the internal ear. Laryngoscope, 1933, 43, 1–38.Google Scholar
  20. Mikaelian, D., & Ruben, R. J. Development of hearing in the normal CBA-J mouse. Correlation of physiological observations with behavioural responses and with cochlear anatomy. Acta Otolaryngologica (Stockholm), 1965, 59, 451–461.CrossRefGoogle Scholar
  21. Murphy, K. P., & Smyth, C. N. Response of foetus to auditory stimulation. Lancet, 1962, 1, 972–973.CrossRefGoogle Scholar
  22. Ormerod, F. C. The pathology of congenital deafness. Journal of Laryngology and Otology, 1960, 74, 919–950.PubMedCrossRefGoogle Scholar
  23. Rasmussen, A. T. Outline of neuroanatomy. Dubuque, Iowa: William C. Brown, 1943.Google Scholar
  24. Retzius, G. Das Gehörorgan der Wirbelthiere. II. Das Gehörorgan der Reptilien, der Vogel und der Saugethiere. Stockholm: Samson & Wallin, 1884.Google Scholar
  25. Ruben, J. Development of the inner ear of the mouse. A radioautographic study of terminal mitoses. Acta Oto-laryngologica. (Stockholm), Supplementum 220, 1967, 1–44.Google Scholar
  26. Tello, J. F. Le réticule des cellules ciliées du labrinthe chez la souris et son indépendance des terminaisons nerveuses de la Ville paire. Trabajos del Instituto Cajal de Investigaciones Biologicas, 1931, 27, 151–186.Google Scholar
  27. Van der Stricht, O. The development of the pillar cells, tunnel space, and Nuel’s spaces in the organ of Corti. Journal of Comparative Neurology, 1919, 30, 283–321.Google Scholar
  28. Van der Stricht, O. The arrangement and structure of sustentacular cells and hair-cells in the developing organs of Corti. Contributions of Embryology, 1920, 9, 109–142.Google Scholar
  29. Wada, T. Anatomical and physiological studies on the growth of the inner ear of the albino rat. Wistlar Institute of Anatomy and Biology, 1923, Memoirs No. 10.Google Scholar
  30. Wedenberg, E. Prenatal tests of hearing. Acta Oto-laryngologica. (Stockholm), Supplementum 206, 1965, 27–32.Google Scholar
  31. Weibel, E. R. Zur Kenntnis der Differenzierungsvorgange im Epithel des Ductus cochlearis. Acta Anatomica (Basel), 1957, 29, 53–90.CrossRefGoogle Scholar
  32. Wersäll, J., & Flock, A. Morphological aspects of cochlear hair-cell physiology. In Henry Ford Hospital International Symposium. Boston: Little, Brown, 1967.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Goran Bredberg
    • 1
  1. 1.Department of AudiologySödersjukhusetStockholmSweden

Personalised recommendations