Atoms In Dense Plasmas

  • Richard M. More
Part of the Nato ASI Series book series (NSSB, volume 143)


When laser light is focussed to intensities of 1014 — 1016 Watt/cm2 onto a cold solid, the target surface promptly rises to temperatures ~0.1 — 1 keV and produces a highly ionized plasma. Heat energy absorbed from the laser penetrates into the cold target by nonlinear electron heat conduction driven by enormous temperature gradients (~ 109 °K/cm). large thermoelectric and magnetic fields are generated, thermally produced x-rays are emitted and the heated material expands in high-velocity hydrodynamic flow. For all these processes the working fluid is a dense plasma of highly-charged ions. Because the densities and/or temperatures greatly exceed those available in previous laboratory plasma devices, we find many interesting new topics for scientific investigation.1,2,3,4


Dense Plasma Lawrence Livermore National Laboratory Pressure Ionization Saha Equation Large Quantum Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    An excellent overview is given by the series Laser Program Annual Report, Lawrence Livermore National Laboratory. UCRL-50021 (1978 to the present).Google Scholar
  2. 2.
    R. M. More. Atomic Physics in Inertial Confinement Fusion, preprint UCRL-84991. Lawrence Livermore National Laboratory (1981).Google Scholar
  3. 3.
    R. M. More. Atomic and Molecular Physics of Controlled Thermonuclear Fusion, p. 399. Ed. by C. Joachain and 5. Post. Plenum Publishing Corp. (1983).Google Scholar
  4. 4.
    Proceedings of Workshop Conference on Radiative Properties of Hot Dense Plasmas. J.Q.S.R.T. 27. p. 209-385 (1982); Radiative Properties of Hot Dense Matter. Ed. by J. Davis. C. Hooper, R. Lee. A. Merts. and B. Rozsnyai. World Scientific, Singapore (1985).Google Scholar
  5. 5.
    M. J. Herbst, P. G. Burkhalter, D. Duston, M. Emery, J. Gardner, J. Grun, S. P. Obenschain, B. H. Ripin, R. R. Whitlock, J. P. Apruzese and J. Davis. Laser Interaction and Related Plasma Phenomena. Vol. 6. Ed. by H. Hora and G. Miley, p. 317. Plenum Press, New York (1984).CrossRefGoogle Scholar
  6. 6.
    Dr. J.-C. Gauthier et al., unpublished paper presented at this meeting.Google Scholar
  7. 7.
    M. D. Rosen, P. L. Hagelstein, et al., Phys. Rev. Lett. 54, 106 (1985)ADSCrossRefGoogle Scholar
  8. D.
    L. Matthews, P. L. Hagelstein, et al., Phys. Rev. Lett. 54, 110 (1985).ADSCrossRefGoogle Scholar
  9. 8.
    E. A. Crawford and A. L. Hoffman, in Laser Interaction and Related Plasma Phenomena. Vol. 6. p. 353. Ed. by H. Hora and G. Miley. Plenum Press, New York (1984).CrossRefGoogle Scholar
  10. 9.
    R. M. More, in Laser Interaction and Related Plasma Phenomena. Vol. 5, p. (253). Ed. by H. J. Schwarz, H. Hora, M. J. Lubin and B. Yaakobi. Plenum Press, New York (1981).Google Scholar
  11. 10.
    D. K. Bradley. J. Hares, A. Rankin and S. J. Rose, The analysis of collidinq-shock experiments, Rutherford Appleton Laboratory, preprint RAL-85-020. (1985).Google Scholar
  12. 11.
    A. Ng, D. Parfeniuk. P. Celliers, L. DaSilva, University of British Columbia, Vancouver B.C., preprint “Electrical Conductivity of a Dense Plasma” (Nov. 1985).Google Scholar
  13. 12.
    R. Fabbro, B. Faral, J. Virmont, F. Cottet, J. P. Romain and H. Pepin, Phys. Fluids 28, 3414 (1985).ADSCrossRefGoogle Scholar
  14. 13.
    Ya. B. Zel’dovich and Yu. P. Raizer. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Vol. 1. Ed. W. D. Hayes and R. F. Probstein. Academic Press, New York (1966).Google Scholar
  15. 14.
    B. Strömgren, Zs. f. Ap. 4, 118 (1932).ADSGoogle Scholar
  16. 15.
    H. Mayer, Los Alamos Scientific Laboratory report LA-647 (unpublished) 1947.Google Scholar
  17. 16.
    W. Lokke and W. Grasberger, Lawrence Livermore Laboratory report UCRL-52276 (1977).Google Scholar
  18. 17.
    G. B. Zimmerman and R. M. More, J.Q.S.R.T. 23, 517 (1980).Google Scholar
  19. 18.
    R. M. More, J.Q.S.R.T. 27, 345 (1982).Google Scholar
  20. 19.
    A. Sommerfeld, Atomic Structure and Spectral Lines. 3rd Ed. Methuen, London (1934).Google Scholar
  21. 20.
    D. Salzmann and G. Wendin, Phys. Rev. A18, 2695 (1978).ADSGoogle Scholar
  22. 21.
    V. C. Reddish, Physics of Stellar Interiors, Edinburgh University Press, Edinburgh (1974).Google Scholar
  23. 22.
    R. M. More, Advances in Atomic and Molecular Physics, 21, 305 (1985), We note that the usual discussion concerns line shifts (not level shifts).ADSCrossRefGoogle Scholar
  24. 23.
    L. Spitzer, Jr,. Physics of Fully Ionized Gases, 2nd Rev. Ed., Interscience Publishers, New York (1962).Google Scholar
  25. 24.
    E. E. Salpeter, J. Geophysical Research 68, 1321 (1963).ADSzbMATHCrossRefGoogle Scholar
  26. 25.
    G. Ecker, Z. für Phys, 148, 593 (1957).MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 26.
    D. Mihalas, Stellar Atmospheres, 2nd Ed,. W. H. Freeman & Co,. San Francisco, p. 294 (1978).Google Scholar
  28. 27.
    R. Dicke, Phys. Rev. 89, 472 (1953).ADSCrossRefGoogle Scholar
  29. 28.
    D. Burgess, D. Everett and R. Lee, J. Phys. B-12, L755 (1979).ADSGoogle Scholar
  30. 29.
    J. Green, J.Q.S.R.T. 4, 639 (1964).Google Scholar
  31. 30.
    S. Brush, H. Sahlin and E. Teller, J. Chem. Phys. 45, 2102 (1966).ADSCrossRefGoogle Scholar
  32. 31.
    J.-P. Hansen, Phys. Rev. A8, 3096 (1973).ADSGoogle Scholar
  33. 32.
    M. Baus and J.-P. Hansen, Physics Reports 59, 1 (1980).MathSciNetADSCrossRefGoogle Scholar
  34. 33.
    H. E. DeWitt, Strongly Coupled Plasmas, p. 81, Ed. by G. Kaiman and P. Carini, Plenum Publishing Corp, (1978).Google Scholar
  35. 34.
    R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill, New York (1981).Google Scholar
  36. 35.
    R. B. Laughlin, Lawrence Livermore National Laboratory, Livermore, CA, preprint UCRL-90304, to appear in Physical Review A.Google Scholar
  37. 36.
    R. M. More, in Laser Program Annual Report, UCRL-50021-84, p. 3–68, Lawrence Livermore National Laboratory, Livermore, CA (1984).Google Scholar
  38. 37.
    P. Hagelstein, Physics of Short Wavelength Laser Design, Lawrence Livermore National Laboratory, Livermore, CA, UCRL-53100 (1981).CrossRefGoogle Scholar
  39. 38.
    L. D. Landau, JETP 7, 203 (1937), The careful reader will observe there is a numerical mistake in the final result of this paper.zbMATHGoogle Scholar
  40. 39.
    C. C. Klick and J. H. Schulman, Solid State Physics 5, 97 (1957)CrossRefGoogle Scholar
  41. D. Dexter and R. Knox, Excitons (Interscience, New York, NY, (1965)).Google Scholar
  42. 40.
    G. Ecker and W. Kröll, Physics of Fluids 8, 354 (1965).ADSzbMATHCrossRefGoogle Scholar
  43. 41.
    D. A. Liberman, Phys. Rev. B20, 4981 (1979).ADSGoogle Scholar
  44. D. A. Liberman, J.Q.S.R.T. 27, 335 (1982).Google Scholar
  45. 42.
    F. Perrot, Phys. Rev. A26, 1035 (1982).ADSGoogle Scholar
  46. 43.
    R. Cauble, M. Blaha and J. Davis, Phys. Rev. A29, 3280 (1984).ADSGoogle Scholar
  47. 44.
    R. M. More, Advances in Atomic and Molecular Physics, 21, 305, (1985).ADSCrossRefGoogle Scholar
  48. 45.
    D. Burgess, unpublished report CLM-P 567, Culhara Laboratory, Abingdon, UK (1978).Google Scholar
  49. 46.
    N. J. Peacock, unpublished report CLM-P 519, Qulham Laboratory, Abingdon, UK (1977).Google Scholar
  50. 47.
    S. Brush and B. H. Armstrong, Proceedings of Workshop Conference on Lowering of the Ionization Potential, JILA report 79, Univ. of Colorado, Boulder, CO (1965).Google Scholar
  51. 48.
    A. Unsold, Z. Astrophys, 24, 355 (1948).MathSciNetADSGoogle Scholar
  52. 49.
    T. Carson and H. Hollingsworth, Mon. Not. R. Astron, Soc. 141, 77 (1968)ADSGoogle Scholar
  53. T. Carson, D. Mayers and D. Stibbs, Mon. Not. R. Astron, Soc. 140, 483 (1968).ADSGoogle Scholar
  54. 50.
    D. Burgess and R. L. Lee, Journal de Physique 43, Colloque C2, 413, (1982).Google Scholar
  55. 51.
    F. J. Rogers, H. C. Graboske, H. DeWitt, Physics Letters 34A, 127 (1971).ADSGoogle Scholar
  56. 52.
    J. Weisheit and B. Shore, Astrophys, J., 194, 519 (1974).ADSCrossRefGoogle Scholar
  57. 53.
    A. Vinogradov. I. Sobelman, and E. Yukov, Sov. J. Quantum Electron, 4, 149 (1974).ADSCrossRefGoogle Scholar
  58. 54.
    S. Brush, H. Sahlin and E. Teller, J. Chem. Phys. 45, 2102 (1966).ADSCrossRefGoogle Scholar
  59. 55.
    F. J. Rogers, unpublished preprint.Google Scholar
  60. 56.
    H. R. Griem, Plasma Spectroscopy, McGraw-Hill, New York (1964).Google Scholar
  61. 57.
    J. Stewart and K. Pyatt, Astrophys, J. 144, 1203 (1966).ADSCrossRefGoogle Scholar
  62. 58.
    J. Humblet, Mem. Soc. R. Sci. Liege 12, 9 (1952)MathSciNetGoogle Scholar
  63. B. Ya. Zel’dovich, Soviet Physics JETP 12, 542 (1961)Google Scholar
  64. R. M. More, Phys, Rev, A 4, 1782 (1971).ADSCrossRefGoogle Scholar
  65. 59.
    T. Regge, Nuevo Cimento VIII, 671 (1958).MathSciNetCrossRefGoogle Scholar
  66. 60.
    C. Bauche-Arnoult, J. Bauche, and M. Klapisch, Phys. Rev. A 20, 2424 (1979).; 25, 2641 (1982)ADSCrossRefGoogle Scholar
  67. M. Klapisch, E. Meroz, P. Mandelbaum, A. Zigler, C. Bauche-Arnoult, and J. Bauche, ibid. 25, 2391 (1982)Google Scholar
  68. C. Bauche-Arnoult, J. Bauche, and M. Klapisch, Phys. Rev. A 31, 2248 (1985).ADSCrossRefGoogle Scholar
  69. 61.
    P. Audebert, J.-C. Gauthier, J.-P. Geindre, and C. Chenais-Popovics, C. Bauche-Arnoult, J. Bauche, M. Klapisch, E. Luc-Koenig, and J.-F. Wyart, Phys. Rev. A32, 409 (1985).ADSGoogle Scholar
  70. 62.
    J. M. Green, J.Q.S.R.T. 19, 639 (1964).Google Scholar
  71. 63.
    F. Grimaldi and A. Grimaldi-Lecourt, J.Q.S.R.T. 27, 373 (1982).Google Scholar
  72. 64.
    M. Busquet, D. Pain, J. Bauche, and E. Luc-Koenig, Physica Scripta 31, 137 (1985).ADSCrossRefGoogle Scholar
  73. 65.
    D. Duston and J. Davis, Phys. Rev. A21, 1664 (1980), Figure 3 of this paper illustrates the (incorrect) recombination predicted by rate equations at high densities.ADSGoogle Scholar
  74. 66.
    J. Scott, Philos. Mag. 43, 859 (1952)Google Scholar
  75. J. Schwinger, Phys. Rev. A22, 1827 (1980).MathSciNetADSGoogle Scholar
  76. 67.
    F. J. Rogers, Phys. Rev. A24, 1531 (1981).ADSGoogle Scholar
  77. 68.
    This equation for the density matrix of a one-electron system is easily derived from the definition given.Google Scholar
  78. 69.
    A. Dalgarno, lectures presented at this meeting.Google Scholar
  79. 70.
    R. M. More, Lawrence Livermore National Laboratory report UCRL-84379, Two-Temperature Equation of State for Dense Plasmas (1980); D. A. Boercker and R. M. More, Phys. Rev. A, to be published.Google Scholar
  80. 71.
    B. J. B. Crowley and R. M. More, Proceedings of Workshop Conference on Atomic Physics for Heavy-Ion Fusion, Rutherford-Appleton Laboratory, October, 1984.Google Scholar
  81. 72.
    J. D. Jackson, Classical Electrodynamics, 2nd Ed,. J. Wiley & Sons. Inc., New York, p. 724 (1975).zbMATHGoogle Scholar
  82. 73.
    S. Skupsky, Phys. Rev. A16, 727 (1977).ADSGoogle Scholar
  83. 74.
    International Workshop on Atomic Physics for Ion Driven Fusion, Journal de Physique, Colloque No. 8, Tome 44, Suppl. an FASC.II (1983)Google Scholar
  84. C. Deutsch, G. Maynard and H. Minoo, Journal de Physique C8, 67 (1983).Google Scholar
  85. 75.
    J. A. Harte and R. M. More, Lawrence Livermore National Laboratory, unpublished report UCRL-50021-82, “Laser Program Annual Report.” p. 3-66.Google Scholar
  86. 76.
    E. J. McGuire, PRA26, 125 (1982)Google Scholar
  87. E. J. McGuire, J. M. Peek and L. C. Pitchford, Phys. Rev. A26, 1318 (1982).ADSGoogle Scholar
  88. 77.
    M. J. Seaton, Comptes Rendus 240, 1317 (1955)Google Scholar
  89. N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions, 3rd Ed,. p. 68, Oxford Univ. Press, London (1965).Google Scholar
  90. 78.
    R. Peierls, Surprises in Theoretical Physics, p. 137, Princeton Univ. Press, Princeton, N.J., 1979.Google Scholar
  91. 79.
    A. Burgess, Ap. J. 139, 776 (1964)ADSCrossRefGoogle Scholar
  92. A. Burgess, Ap. J. 141, 1588 (1965)ADSCrossRefGoogle Scholar
  93. A. Burgess and A. S. Tworkowski, Ap. J. 205, L–105 (1976)CrossRefGoogle Scholar
  94. A. Merts, R. D. Cowan, and N. H. Magee, Jr., unpublished report LA-6220-MS (1976).Google Scholar
  95. 80.
    H. A. Kramers, Philos. Mag. 271, 836 (1923).Google Scholar
  96. 81.
    L. D. Landau and E. M. Lifshitz, Classical Theory of Fields, 2nd Ed., Pergamon Press, Oxford, 1962.zbMATHGoogle Scholar
  97. 82.
    W. J. Karzas and R. Latter, Astrophysical Journal Suppl. no. 55, Vol. VI, p. 167 (1961)ADSGoogle Scholar
  98. P. J. Brussard and H. C. Van de Hülst, Rev. Mod. Phys. 34, 507 (1962).ADSCrossRefGoogle Scholar
  99. I. P. Grant, Mon. Not. R. Astron, Soc. 118, 352 (1958).Google Scholar
  100. 83.
    M. Lamoureux and R. H. Pratt, Radiative Properties of Hot Dense Matter, p. 241, Ed. by J. Davis et al., World Scientific, Singapore (1985).Google Scholar
  101. 84.
    V. I. Kogan and A. B. Kukushkin, Soviet Physics JETP 60, 665 (1984).Google Scholar
  102. 85.
    J. J. Feng and R. H. Pratt, unpublished preprint.Google Scholar
  103. 86.
    C. M. Lee and R. H. Pratt, Phys. Rev. A12, 707 (1975).ADSGoogle Scholar
  104. 87.
    J. P. Cox and R. T. Giuli, Principles of Stellar Structure, Vol. 1, Gordon and Breach, New York, 1968.Google Scholar
  105. 88.
    J. Dawson and C. Oberman, Physics of Fluids 6, 394 (1963).MathSciNetADSCrossRefGoogle Scholar
  106. 89.
    B. F. Rozsnyai, J.Q.S.R.T. 22, 337 (1979).Google Scholar
  107. 90.
    J. M. Green, R. and D. Associates unpublished report RDA-TR-108600-003 (1980).Google Scholar
  108. 91.
    M. Lamoureux, I. J. Feng, R. H. Pratt and H. K. Tseng, J.Q.S.R.T. 27, 227 (1982).Google Scholar
  109. 92.
    L. Kim, R. H. Pratt and H. K. Tseng, Phys. Rev. A32, 1693 (1985).ADSGoogle Scholar
  110. 93.
    S. Ichimaru, Basic Principles of Plasma Physics, W. A. Benjamin. Inc,. Reading, Mass. 1973.Google Scholar
  111. 94.
    M. Lamoureux, C. Möller and P. Jaegle, Phys. Rev. A30, 429 (1984).ADSGoogle Scholar
  112. 95.
    W. Huebner, M. F. Argo and L. D. Ohlsen, J.Q.S.R.T. 19, 93 (1978).Google Scholar
  113. 96.
    H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms, Academic Press. Inc., New York. 1957.zbMATHCrossRefGoogle Scholar
  114. 97.
    S. J. Rose, Rutherford-Appleton Laboratory, unpublished preprint RL-82-114, “The Effect of Relativity on the Oscillator Strengths of Hydrogen-Like Ions.” Dec. 1982.Google Scholar
  115. 98.
    O. Benka and R. Watson, Phys. Rev. A29, 2255 (1984).ADSGoogle Scholar
  116. 99.
    M. D. Rosen, D. W. Phillion, V. C. Rupert et al., Phys. Fluids 22, 2020 (1979).ADSCrossRefGoogle Scholar
  117. 100.
    W. C. Mead, E. M. Campbell et al., Phys. Fluids 26, 2316 (1983).ADSCrossRefGoogle Scholar
  118. 101.
    R. W. P. McWhirter in Plasma Diagnostic Techniques, ed. by R. Huddlestone and S. Leonard, Academic Press, New York, 1965.Google Scholar
  119. 102.
    C. DeMichelis and M. Mattioli, Rep. Prog. Phys. 47, 1233 (1984).ADSCrossRefGoogle Scholar
  120. 103.
    H. R. Griem, Handbook of Plasma Physics, eds. M. N. Rosenbluth and R. Z. Sagdeev, Vol. 1, p. 73. North-Holland. 1983.Google Scholar
  121. 104.
    P. Kunasz, in Radiative Properties of Hot Dense Matter, ed. by J. Davis, C. Hooper, R. Lee, A. Merts, B. Rozsnyai, p. 3, World Scientific, Singapore, 1985.Google Scholar
  122. 105.
    G. J. Pert, preprint, University of Hull, “SUV and X-ray Lasers.” to be published.Google Scholar
  123. 106.
    P. Jaegle, lectures presented at this meeting.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Richard M. More
    • 1
  1. 1.Lawrence Livermore National LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations