An Introduction to Rydberg Atoms

  • Daniel Kleppner
Part of the Nato ASI Series book series (NSSB, volume 143)


If a single valence electron of any atom is promoted to a state of high principal quantum number n, the electron experiences an essentially Coulombic potential and behaves in many respects like a highly excited electron in hydrogen. An atom in such a state is known as a Rydberg atom. How this title originated does not seem to be known, but presumably the term is associated with the fact that the spectra of many “singleelectron” atoms are accurately described by Rydberg’s hydrogen-like formula. (Sometimes the term “highly excited atom” is used, though this term is more properly applied to atoms in core-excited states whose energies are vastly higher than those of Rydberg atoms.) How large n must be for an atom to qualify as a Rydberg atom is vague, but a reasonable working definition is n > 10.


Atomic Beam Rydberg State Rydberg Atom Field Ionization Quantum Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.J. Balmer, Annalen der Physik und Chemie N.F. 25, 80 (1885). Translated in Atomic Spectra. W.R. Hindermarsh, Pergamon Press, Oxford (1967). This paperback presents in translation many of the classic papers in atomic physics, with commentary.ADSCrossRefGoogle Scholar
  2. 2.
    N. Bohr, Philosophical Magazine 26, 1 (1913).zbMATHCrossRefGoogle Scholar
  3. 3.
    Rydberg states of atoms and molecules, eds. R.F. Stebbings and F.B. Dunning, Cambridge University Press, Cambridge (1983).Google Scholar
  4. 4.
    K.A. Safinya, J.F. Delpech, F. Gounand, W. Sandner, and T.F. Gallagher, Phys. Rev. Lett. 47, 6 (1981).Google Scholar
  5. 5.
    M.L. Zimmerman, M.G. Littman, M.M. Kash and D. Kleppner, Phys. Rev. A, 20, 6 (1979).CrossRefGoogle Scholar
  6. 6.
    R.R. Freeman and D. Kleppner, Phys. Rev. A 14, 1614 (1976).ADSCrossRefGoogle Scholar
  7. 7.
    M.G. Littman, M.M. Kash and D. Kleppner, Phys. Rev. Lett. 41, 103 (1978).ADSCrossRefGoogle Scholar
  8. 8.
    S. Feneuille, S. Liberman and A. Taleb, Phys. Rev. Lett. 42, 1402 (1979).ADSCrossRefGoogle Scholar
  9. 9.
    C. Fabre, M. Gross, J.M. Raimond and S. Haroche, J. Phys. B 16, L071 (1983).CrossRefGoogle Scholar
  10. 10.
    H. Rinnberg, J. Neukammer, G. Jonsson, H. Hieronymus, A. Kong and K. Vietzke, Phys. Rev. Lett. 55, 382 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    D. Harmin, Phys. Rev. A 30, 2413 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    L. Holberg and J.L. Hall, Phys. Rev. Lett. 53, 230 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    R.G. Hulet and D. Kleppner, Phys. Rev. Lett. 51, 1430 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    R.M. Jopson, R.R. Freeman, W.E. Cooke and J. Bokor, Phys. Rev. A 29, 3154 (1984).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Daniel Kleppner
    • 1
  1. 1.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations