Advertisement

Non-Relativistic Many-Body Perturbation Theory

  • Ingvar Lindgren
Part of the Nato ASI Series book series (NSSB, volume 143)

Abstract

The formalism of non-relativistic many-body perturbation theory, based on the linked-diagram expansion, is reviewed. The wave operator, transforming the unperturbed wave function into the perturbed one, is expressed in second quantization, and equations for the coefficients are derived. Solving a hierachy of such equations in a self-consistent way is equivalent to evaluating the one-, two-, ... body effects to all orders of perturbation theory. The formalism is extended to the coupled-cluster approach, where the wave operator is expressed in exponential form.

A numerical procedure based on the solution of inhomogeneous differential equations of one- and two-particle type is described, and a number of illustrative numerical results is given.

The possibility of extending the procedure to the relativistic case is discussed. A procedure based on the diagonalization of the singleelectron Dirac Hamiltonian is outlined. In this procedure the positive and negative single-electron states are easily separated and it should be possible to treat the negative-energy states (virtual-pair creation) in a correct way.

Keywords

Normal Form Dirac Operator Wave Operator Pair Approximation Configuration Interaction Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.A. Brueckner, Phys. Rev. 100, 36 (1955).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    J. Goldstone, J. Proc. Roy. Soc. (London) A239, 267 (1957).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    H.P. Kelly, Phys. Rev. 131, 684 (1963).ADSzbMATHCrossRefGoogle Scholar
  4. 4.
    B.H. Brandow, Rev. Mod. Phys. 39, 771 (1967).ADSCrossRefGoogle Scholar
  5. 5.
    P.G.H. Sandars, Adv. Chem. Phys. 14, 365 (1969).CrossRefGoogle Scholar
  6. 6.
    I. Lindgren, J. Phys. B7, 2241 (1974).Google Scholar
  7. 7.
    V. Kvasnička, Czeck. J. Phys. B24, 605 (1974)., B25, 371 (1975)ADSCrossRefGoogle Scholar
  8. 8.
    G. Oberlechner, F. Owono-N-Guema and J-Richert, Nuovo Cimento B28, 23 (1970).MathSciNetADSGoogle Scholar
  9. 9.
    T.T.S. Kuo, S.Y. Lee and K.F. Ratcliff, Nucl. Phys. A176, 65 (1971).ADSGoogle Scholar
  10. 10.
    M.B. Johnson and M. Baranger, Ann. Phys. (N.Y.) 62, 172 (1971).ADSCrossRefGoogle Scholar
  11. 11.
    F. Coester, Nucl. Phys. 7, 421 (1958).CrossRefGoogle Scholar
  12. F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960).zbMATHCrossRefGoogle Scholar
  13. 12.
    O. Sinanoglu, J. Chem. Phys. 36, 706, 3198 (1962)ADSCrossRefGoogle Scholar
  14. 13.
    J. Čížek, J. Chem. Phys. 45, 4256 (1966); Adv. Chem. Phys. 14, 35 (1969)CrossRefGoogle Scholar
  15. 14.
    D. Mukherjee, R.K. Moitra and A. Mukhopadhyay, Pramana 4, 246 (1975); Mol. Phys. 33, 955 (1977)CrossRefGoogle Scholar
  16. 15.
    R. Offermann, W. Ey and H. Kümmel, Nucl. Phys. A273, 349 (1976); W. Ey, Nucl. Phys. A296, 189 (1978)ADSGoogle Scholar
  17. 16.
    I. Lindgren, Int. J. Quant. Chem. S12, 33 (1978).Google Scholar
  18. 17.
    J. Paldus, J. Čížek. M. Saute and A. Laforgue, Phys. Rev. A17, 805 (1978).ADSGoogle Scholar
  19. 18.
    V. Kvasnicka, Chem. Phys. Lett. 79, 89 (1981).: Adv. Quant. Chem. 52, 181 (1982)ADSCrossRefGoogle Scholar
  20. 19.
    G.E. Brown and D.G. Ravenhall, Proc. Roy. Soc. (London) A208, 552 (1951).MathSciNetADSGoogle Scholar
  21. 20.
    H.A. Bethe and E.E. Salpeter, “Quantum Mechanics of One-and Two-electron Atoms”, Springer-Verlag, Berlin and New York (1957)zbMATHCrossRefGoogle Scholar
  22. 21.
    J. Sucher, Phys. Rev. A22, 348 (1980).MathSciNetADSGoogle Scholar
  23. 22.
    M.H. Mittleman, Phys. Rev. A24, 1167 (1981).ADSGoogle Scholar
  24. 23.
    L.L. Foldy and S.A. Wouthuysen, Phys. Rev. 78, 29 (1950).ADSzbMATHCrossRefGoogle Scholar
  25. 24.
    J.L. Heully, I. Lindgren, E. Lindroth, S. Lundqvist and A.-M-Mårtensson-Pendrill (to be published)Google Scholar
  26. 25.
    C. Bloch, Nucl. Phys. 6, 329 (1958).CrossRefGoogle Scholar
  27. 26.
    I. Lindgren and J. Morrison, Atomic Many-Body Theory, Springer Series in Chemical Physics. Vol. 13 (1982)Google Scholar
  28. 27.
    I. Lindgren, Phys. Scripta 32, 291 (1985).ADSCrossRefGoogle Scholar
  29. 28.
    G.C. Wick, Phys. Rev. 80, 268 (1958).MathSciNetADSCrossRefGoogle Scholar
  30. 29.
    J.A. Pople, J.S. Binkley and R. Seeger, Int. J. Quantum Chem. S10, 1 (1976).Google Scholar
  31. 30.
    R.J. Bartlett and G.D. Purvis, Phys. Scripta 21, 255 (1980).ADSCrossRefGoogle Scholar
  32. 31.
    P.O. Löwdin, J. Math. Phys. 3, 1171 (1958).CrossRefGoogle Scholar
  33. 32.
    I. Lindgren, J. Lindgren and A.-M. Mårtensson, Z. Physik A279, 113 (1976)ADSGoogle Scholar
  34. 33.
    R.M. Sternheimer, Phys. Rev. 80, 102 (1950). ibid. A6, 1702 (1972).ADSCrossRefGoogle Scholar
  35. 34.
    V. McKoy and N.W. Winter, J. Chem. Phys. 48, 5514 (1968)ADSCrossRefGoogle Scholar
  36. 35.
    J. Morrison, Phys. Rev. A6, 643 (1972); J. Phys. B6, 2205 (1973).ADSGoogle Scholar
  37. 36.
    S. Garpman, I. Lindgren, J. Lindgren and J. Morrison, Phys. Rev. A11, 758 (1975); Z. Physik A276, 167 (1976)ADSGoogle Scholar
  38. 37.
    A.-M. M&#00E5;rtensson, J. Phys. B12, 3995 (1979).ADSGoogle Scholar
  39. 38.
    C.F. Bunge, Theor. Chim. Acta 16, 126 (1970).CrossRefGoogle Scholar
  40. 39.
    C.L. Pekeris, Phys. Rev. 126, 143 (1962); ibid. 127, 509 (1962)ADSCrossRefGoogle Scholar
  41. 40.
    I. Lindgren, Reports on Progress in Physics 47, 345 (1984).ADSCrossRefGoogle Scholar
  42. 41.
    I. Lindgren, Phys. Rev. A31, 1273 (1985).ADSGoogle Scholar
  43. 42.
    S. Larsson, Phys. Rev. 169, 49 (1968).ADSCrossRefGoogle Scholar
  44. T. Ahlenius and S. Larsson, Phys. Rev. A8, 1 (1973).ADSGoogle Scholar
  45. 43.
    J.S. Sims, S.A. Hagstrom and P.R. Rumble Jr, Phys. Rev. A14, 576 (1976).ADSGoogle Scholar
  46. 44.
    I. Lindgren and A. Rosén, Case Studies in Atomic Physics 4, 93 (1974).Google Scholar
  47. 45.
    S. Salomonson, Z. Physik A316, 135 (1984).ADSGoogle Scholar
  48. 46.
    E. Lindroth, A.-M. Mårtensson-Pendrill and S. Salomonson, Phys. Rev. A31, 58 (1985).ADSGoogle Scholar
  49. 47.
    J.P. Descleaux, Comp. Phys. Commun. 9, 31 (1975).ADSCrossRefGoogle Scholar
  50. 48.
    I.P. Grant, Comp. Phys. Commun. 17, 149 (1979).ADSCrossRefGoogle Scholar
  51. 49.
    J.-L. Heully, I. Lindgren, E. Lindroth and A.-M. Mårtensson-Pendrill, submitted to Phys. Rev. AGoogle Scholar
  52. 50.
    M. Vajed-Samii, N.S. Ray, T.P. Das and J. Andriessen, Phys. Rev. A24, 1204 (1981).ADSGoogle Scholar
  53. 51.
    J.L. Heully and A.-M. Mårtensson-Pendrill, Phys. Rev. A27, 3332 (1983); Phys. Scripta 27, 291 (1983)ADSGoogle Scholar
  54. 52.
    A.-M. Mårtensson, E.M. Henley and L. Wilets, Phys. Rev. A24, 308 (1981).ADSGoogle Scholar
  55. 53.
    W.R. Johnson and C.D. Lin, Phys. Rev. A14, 565 (1976), ibid. A20, 964 (1979)ADSGoogle Scholar
  56. 54.
    P.G.H. Sandars, Phys. Scripta 21, 284 (1980).ADSCrossRefGoogle Scholar
  57. 55.
    P.G.H. Sandars, J. Phys. B10, 2983 (1977).ADSGoogle Scholar
  58. 56.
    V.A. Dzuba, V.V. Flambaum, P.G. Silverstrov and O.P. Sushkov, Phys. Scripta 31, 275 (1985).ADSCrossRefGoogle Scholar
  59. 57.
    J.H. Wood and A.M. Bohring, Phys. Rev. B18, 2701 (1978).ADSGoogle Scholar
  60. 58.
    J.L. Heully, J. Phys. B15, 4079 (1982).ADSGoogle Scholar
  61. J.L. Heully and S. Salomonson, J. Phys. B15, 4093 (1982).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Ingvar Lindgren
    • 1
  1. 1.Chalmers University of Technology/University of GothenburgGöteborgSweden

Personalised recommendations