Magneto-Optical Spectroscopy in Strong Fields

  • J. P. Connerade
Part of the NATO ASI Series book series (NSSB, volume 212)


The present lectures are aimed at stimulating interest in atomic magneto-optical spectroscopy, which appears to be a rather neglected area of the strong field problem. Several lecture courses in the present volume recount the remarkable progress achieved in recent years in the understanding of spectral structure for atoms in high magnetic fields. A noteworthy feature of such progress is that semi-classical approximations achieve most, if not all, of the understanding required to interpret energy levels. Nevertheless, they do not provide any useful information on intensities, for which quantum mechanical methods are necessary. Thus, if we are interested in probing the quantum mechanical aspects of the strong field problem experimentally, measurements of photoabsorption cross sections or atomic f-values should play a key rôle. Unfortunately, a detailed and quantitative intensity map for the strong field problem presents a formidable challenge. There is an enormous complexity of structure, much of which is very sharp, so that it would be virtually impossible to measure oscillator strengths accurately for all of the individual lines.


Synchrotron Radiation Faraday Rotation Principal Series Magnetic Circular Dichroism Faraday Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coherent Light by A.F. Harvey Wiley Interscience (London) 1970.Google Scholar
  2. 2.
    Fundamentals of Optics (Third Edition) by F.A. Jenkins and H.E. White McGraw-Hill Book Company Inc (New York) 1957.Google Scholar
  3. 3.
    Garton W.R.S. and Tomkins F.S. Astrophys J. 158 839 (1969).ADSCrossRefGoogle Scholar
  4. 4.
    Causality and Dispersion Relations by H.M. Nussenzveig Academic Press New York and London 1972.Google Scholar
  5. 5.
    Buckingham A. D. and Stephens P.J. Ann. Rev. Phys Chem. 17 399 (1966).ADSCrossRefGoogle Scholar
  6. 6.
    Gawlik W. Kowalski J. Neumann R. Wiegemann H. and Winkler K. J.Phys. B At. Mol. Phys. 12, 3873 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    Resonance Radiation and Excited Atoms by Mitchell A.C.G. and Zemansky M.W. Cambridge University Press, Cambridge 1971.Google Scholar
  8. 8.
    Hui A.K. Armstrong B.H. and Wray A.A. J. Quant. Spec, and Rad. Transfer 19, 509 (1978).ADSCrossRefGoogle Scholar
  9. 9.
    Connerade J.P. J. Phys. B At. Mol. Phys. 16 399 (1983).ADSCrossRefGoogle Scholar
  10. 10.
    Electromagnetic Radiation and the Mechanical Reactions Arising from it being an Adams Essay Prize in the University of Cambridge by Schott G.A., former Scholar of Trinity College Cambridge Cambridge University Press 1912.Google Scholar
  11. 11.
    Kapitza P. Proc. Roy. Soc. (London) A167, 1 (1938).ADSCrossRefGoogle Scholar
  12. 12.
    Parkinson W.H. Reeves E.M. and Tomkins F.S. J. Phys. B At. Mol. Phys. 9, 157 (1976).ADSCrossRefGoogle Scholar
  13. 13.
    Connerade J.P. and Lane A.M. J. Phys. B At. Mol. Phys. bf 18, L605 (1985).ADSCrossRefGoogle Scholar
  14. 14.
    Armstrong J.A. Wynne J.J. and Esherick P. J. Phys. B. At. Mol. Phys. 16, 399 (1983).CrossRefGoogle Scholar
  15. 15.
    Giraud-Cotton S. and Kaftandjian V.P. Phys. Rev. A32, 2211 and 2223 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    Atkins P.W. and Miller M.H Molecular Physics 15 503 (1968).ADSCrossRefGoogle Scholar
  17. 17.
    Connerade J.P. J.Phys. B At. Mol. Phys. 21, L551 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. P. Connerade
    • 1
    • 2
  1. 1.Blackett Laboratory Imperial CollegeLondonUK
  2. 2.Physikalisches InstitutUniversität BonnGermany

Personalised recommendations