Hydrogen Atom in a Strong Uniform Electric Field

  • R. Damburg
Part of the NATO ASI Series book series (NSSB, volume 212)


The nonrelativistic Lo Surdo-Stark effect (LS-SE) for hydrogen atom in a uniform electric field is often considered as a completely understood problem. The reason for this is the following. The Schrödinger equation for the LS-SE is separable in parabolic coordinates and, consequently, it can be reduced to the solution of two ordinary differential equations linked by the condition on separation constants. Therefore, at first sight, the problem, except maybe some technical difficulties, seems to be a trivial one. But it is not so. Even the technical difficulties connected with the separate ordinary differential equations originated from the LS-SE appeared to be not quite trivial and caused the creation of a new direction in physics and mathematics, namely, a large order perturbation theory (LOPT), which was discussed at this meeting by Silverstone [1] and Silverman [2].


Quantum Number Schrodinger Equation Uniform Electric Field Quasistationary State Rydberg Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.J. Silverstone, Scientific program and abstracts of lectures, “Atom in Strong Firlds”, Kos, Greace, 1988.Google Scholar
  2. 2.
    J.H. Silverman and C.A. Nicolaides, Scientific program and abstracts of lectures, “Atom in Strong Firlds”, Kos, Greace, 1988.Google Scholar
  3. 3.
    P.M. Koch and D.R. Mariani, Phys.Rev.Lett. 46, 1275 (1981.ADSCrossRefGoogle Scholar
  4. 4.
    R.J. Damburg and V.V. Kolosov, Rydberg States of Atoms and Molecules, eds. R.F. Stebbings and F.B. Dunning (Cambridge University Press, 1983), ch.2, pp.31-71.Google Scholar
  5. 5.
    R.R. Freeman and N.I. Economow, Phys.Rev. 420, 7356 (1979).Google Scholar
  6. 6.
    W. Glab, G.B. Hillard and M.H. Nayfeh, Phys.Rev. A28, 3682 (1983) and references within it.ADSCrossRefGoogle Scholar
  7. 7.
    W.L. Glab, K. Ng. Decheng Yao and M.H. Nayfeh, Phys.Rev. A31, 3682 (1983) and references within it.ADSCrossRefGoogle Scholar
  8. 8.
    H. Rottke and K.H. Welge, Phys.Rev. A33, 301 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    A.R.P. Rau, J.Phys. B12, L193 (1979).ADSGoogle Scholar
  10. 10.
    A.R.P. Rau and K.T. Lu, Phys.Rev. A21, 1057 (1979).ADSGoogle Scholar
  11. 11.
    D. Kondratovich and V.N. Ostrovsky, Zh.Eksp.Teor.Fiz. 83, 1256 (1982)ADSGoogle Scholar
  12. D. Kondratovich and V.N. Ostrovsky, [Sov.Phys. JETP 56, 719 (1982)].Google Scholar
  13. 12.
    D.A. Harmin, Phys.Rev. A24, 2491 (1981).ADSCrossRefGoogle Scholar
  14. D.A. Harmin, Phys.Rev.Lett. 49, 128 (1982).ADSCrossRefzbMATHGoogle Scholar
  15. D.A. Harmin, Phys.Rev. A26, 2656 (1982).ADSCrossRefGoogle Scholar
  16. 13.
    V. Kolosov, Pis’ma Zh. Eksp. Teor. Fiz. 44, 457 (1986).Google Scholar
  17. V. Kolosov, [JETP Lett. 44, 588 (1986)].ADSGoogle Scholar
  18. 14.
    V.N. Weinberg, V.D. Mur, V.S. Popov and A.V. Sergeev, Pis’ma Zh.Eksp.Teor.Fiz. 46, 178 (1987)Google Scholar
  19. V.N. Weinberg, V.D. Mur, V.S. Popov and A.V. Sergeev, [JETP Lett. 46, 225 (1987)].ADSGoogle Scholar
  20. 15.
    T.P. Grozdanov, P.S. Krstic, M.J. Rakovic and E. A. Solov’ev, Phys. Letters A132, 262 (1988).ADSCrossRefGoogle Scholar
  21. 16.
    O. Bely, D. Moores and M.J. Seaton, Atomic Collision Processes (The Proceedings of III ICPEAC) éd. M.R.C. McDowell (North-Holland Publishing Company, 1964), pp.304-311.Google Scholar
  22. 17.
    R. Damburg and R. Peterkop, Proc.Phys.Soc. 80, 1073 (1962).ADSCrossRefGoogle Scholar
  23. 18.
    G.J. Schultz, Phys.Rev. 125, 229 (1962).ADSCrossRefGoogle Scholar
  24. 19.
    L.D. Landau and E.M. Lifschitz, Quantum Mechanics (New York: Pergamon Press, 1958).zbMATHGoogle Scholar
  25. 20.
    M. Gailitis, J.Phys. B 9, 843 (1976).ADSCrossRefGoogle Scholar
  26. 21.
    K.L. Baluja, P.G. Burke and L.A. Morgan, Comp.Phys.Commun. 27, 299 (1982).ADSCrossRefGoogle Scholar
  27. 22.
    W.L. Fite and R.T. Brackman, Phys.Rev. 112, 1151 (1958).ADSCrossRefGoogle Scholar
  28. 23.
    W. Lichten and S. Schultz, Phys.Rev. 116, 1132 (1959).ADSCrossRefGoogle Scholar
  29. 24.
    R.F. Stebbings, W.L. Fite, D.G. Hummer and T.R. Brackman, Phys.Rev. 119 1939 (1969).ADSCrossRefGoogle Scholar
  30. 25.
    P.G. Burke, H. M. Schey and K. Smith, Phys.Rev. 129, 1258 (1963).ADSCrossRefGoogle Scholar
  31. 26.
    K. Omidvar, Atomic Collision Processes, ed.M.R.C. McDowell (North-Holland Publishing Company, 1964) pp.318-23.Google Scholar
  32. 27.
    M. Gailitis and R. Damburg, Proc. Phys. Soc. 82, 192 (1963).ADSCrossRefGoogle Scholar
  33. 28.
    G.E. Chamberlain, S.J. Smith abd D.W. Heddle, Phys.Rev. Lett. 12, 647 (1964).ADSCrossRefGoogle Scholar
  34. 29.
    S. Graffi and V. Grecchi, Commun. Math. Phys. 62, 83 (1972).MathSciNetADSCrossRefGoogle Scholar
  35. 30.
    D. Farrelly and P. Reinhardt, J.Phys. B 16, 2103 (1983).ADSCrossRefGoogle Scholar
  36. 31.
    L. Benassi and V. Grecchi, J.Phys. B 13, 911 (1980).ADSCrossRefGoogle Scholar
  37. 32.
    P. McNicholl, T. Bergeman and H.J. Metcalf, Phys.Rev. A37, 3302 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • R. Damburg
    • 1
  1. 1.Institute of PhysicsLatvian SSR Academy of SciencesRiga, SalaspilsUSSR

Personalised recommendations