Theory of the Zeeman Effect in Highly Excited Atoms

  • K. T. Taylor
Part of the NATO ASI Series book series (NSSB, volume 212)


This paper will be concerned with the quantum mechanical theory and associated calculations developed to treat atoms in strong laboratory strength (1–5 tesla) magnetic fields. These developments began in the early seventies in attempts to understand spectra of the alkaline earths obtained in the pioneering measurements by Garton and Tomkins [1], but, (together with those in classical theory), have been greatly stimulated over the last few years by the high resolution measurements on atomic hydrogen, made by the Bielefeld group [2].


Magnetic Field Strength Oscillator Strength Rydberg State Ionization Threshold Generalise Eigenvalue Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.R.S. Garton and F.S. Tomkins, Astrophys. J. 158 (1969) 839.ADSCrossRefGoogle Scholar
  2. 2.
    A. Holle, G. Wiebusch, J. Main, H. Rottke, B. Hager and K.H. Welge, Phys. Rev. Lett. 56 (1986) 2594.ADSCrossRefGoogle Scholar
  3. J. Main, G. Wiebusch, A. Holle and K.H. Welge, Phys. Rev. Lett. 52 (1986) 2789.ADSCrossRefGoogle Scholar
  4. 3.
    A.F. Starace, J. Phys. B 6 (1973) 585.ADSCrossRefGoogle Scholar
  5. 4.
    M.L. Zimmerman, M.M. Kash and D. Kleppner, Phys. Rev. Lett. 45 (1980) 1092.ADSCrossRefGoogle Scholar
  6. 5.
    E A. Solov’ev, JETP Lett. 34 (1981) 265.ADSGoogle Scholar
  7. 6.
    D.R. Herrick, Phys.Rev. A26 (1982) 323.MathSciNetADSCrossRefGoogle Scholar
  8. 7.
    D. Delande and J.C. Gay, J. Phys. B 17 (1984) L335.MathSciNetADSCrossRefGoogle Scholar
  9. 8.
    C.W. Clark and K.T. Taylor, J. Phys. B 13. (1980) L737.ADSCrossRefGoogle Scholar
  10. C.W. Clark and K.T. Taylor, Nature 292 (1981) 437.ADSCrossRefGoogle Scholar
  11. C.W. Clark and K.T. Taylor, J. Phys. B 15 (1982) 1175.ADSCrossRefGoogle Scholar
  12. 9.
    D. Wintgen and H. Friedrich, J. Phys. B 19 (1986) 991.ADSCrossRefGoogle Scholar
  13. D. Wintgen and H. Friedrich, J. Phys. B 19 (1986) 1261.ADSCrossRefGoogle Scholar
  14. 10.
    D. Delande and J.C. Gay, Phys. Rev. Lett. 57 (1986) 2006.ADSCrossRefGoogle Scholar
  15. 11.
    D. Wintgen and H. Friedrich, Phys. Rev. Lett, 57 (1986) 571.ADSCrossRefGoogle Scholar
  16. 12.
    G. Wunner, U. Woelk, I. Zech, G. Zeller, T. Ertl, F. Geyer, W. Schweizer and H. Ruder, Phys. Rev. Lett. 57 (1986) 3261.ADSCrossRefGoogle Scholar
  17. 13.
    G. Wunner, M. Kost and H. Ruder, Phys.Rev. A33 (1986) 1444.ADSCrossRefGoogle Scholar
  18. 14.
    G. Zeller, private communication.Google Scholar
  19. 15.
    P.F. O’Mahony and K.T. Taylor, Phys. Rev. Lett. 57 (1986) 2931.ADSCrossRefGoogle Scholar
  20. 16.
    T.S. Monteiro and K.T. Taylor, J. Phys. B 21 (1989) L191.CrossRefGoogle Scholar
  21. 17.
    U. Fano, Phys.Rev. A2 (1970) 353.MathSciNetADSCrossRefGoogle Scholar
  22. 18.
    M.J. Seaton, Rep.Prog.Phys.,46 (1983) 167.ADSCrossRefGoogle Scholar
  23. 19.
    P.F. O’Mahony in ‘Fundamental Processes of Atomic Dynamics’, J.S. Briggs, H. Kleinpoppen and H.O. Lutz, eds. (Plenum Press, New York 1988) p. 197.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • K. T. Taylor
    • 1
  1. 1.Royal Holloway and Bedford New CollegeUniversity of LondonSurreyUK

Personalised recommendations