Skip to main content

Molecules in Intense Laser Fields

  • Chapter
Atoms in Strong Fields

Part of the book series: NATO ASI Series ((NSSB,volume 212))

  • 292 Accesses

Abstract

Recent advances in tunable laser sources have stimulated a great deal of interest in the study of intense field-matter interaction physics. Whenever a molecule interacts with an intense radiation field, it can absorb multiple photons from the field and make a transition either to an excited state (excitation) or into the continuum (ionization). If the energy of an integral number of photons equals the energy difference between the initial and an excited state, the multiphoton process becomes resonant and its probability is greatly enhanced. The observation of such resonant enhanced processes requires considerably less intensity than that required for non-resonant processes. Several researchers have taken advantage of this resonance enhancement to study various aspects of resonant enhanced multiphoton ionization (REMPI) processes in molecules.1 Measurement of ionic and photoelectron spectra have illustrated features such as non-Franck-Condon effects in ionic vibrational branching ratios due to autoionization,2 shape resonances3 and Cooper minima,4 non-atomic effects in ionization of Rydberg states5 and competition between rotational and vibrational autoionization.6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example K. Kimura, Adv. Chem. Phys. 60 161 (1985).

    Article  Google Scholar 

  2. R. N. Compton and J. C. Miller, in Laser Appl. in Phys. Chem., ed. D. K. Evans (Dekker, NY 1988).

    Google Scholar 

  3. S. T. Pratt, P. M. Dehmer and J. L. Dehmer, Chem. Phys. Lett. 105 28 (1984).

    Article  ADS  Google Scholar 

  4. S. T. Pratt et al, J. Chem. Phys. 85 3379 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  5. M. A. O’Halloran et al, J. Chem. Phys. 87 3288 (1987).

    Article  ADS  Google Scholar 

  6. E. Y. Xu et al., Phys. Rev. A 36 5645 (1987).

    Article  ADS  Google Scholar 

  7. P. J. Miller et al., J. Chem. Phys. 89 3921 (1988).

    Article  ADS  Google Scholar 

  8. J. A. Stephens et al., J. Chem. Phys. 89 3923 (1988).

    Article  ADS  Google Scholar 

  9. M. Braunstein et al., J. Chem Phys. 90 633 (1989).

    Article  ADS  Google Scholar 

  10. J. A. Stephens and V. McKoy Phys. Rev. Lett. 62 889 (1989).

    Article  ADS  Google Scholar 

  11. S. N. Dixit, et al., Phys Rev A 32 1267 (1985).

    Article  ADS  Google Scholar 

  12. S. T. Pratt et al., to be published.

    Google Scholar 

  13. S. N. Dixit et al., Phys. Rev. A, to be published.

    Google Scholar 

  14. See, for example C. Cornaggia et al, J. Chem. Phys. 87 3934 (1987).

    Article  ADS  Google Scholar 

  15. S. Fredin et al., Mol. Phys. 60 825 (1987), and related references.

    Article  ADS  Google Scholar 

  16. See, for example E. Y. Xu et al., Phys. Rev. A 39 3979 (1989) and references therein.

    Article  ADS  Google Scholar 

  17. K. Codling et al, J. Phys. B 20 L5254 (1987).

    Article  Google Scholar 

  18. L. J. Frasinski et al., Phys. Rev. Lett. 58 2424 (1987).

    Article  ADS  Google Scholar 

  19. T. S. Luk and C. K. Rhodes, Phys. Rev. A 38 6180 (1988).

    Article  ADS  Google Scholar 

  20. P. Bucksbaum, private communication.

    Google Scholar 

  21. K. Codling et al., J. Phys B 21 L433 (1988).

    Article  ADS  Google Scholar 

  22. D. C. Humm et al., to be published.

    Google Scholar 

  23. K. P. Huber and G. Herzberg, “Constants of Diatomic Molecules,” (Van Nostrand Reinhold, New York, 1979).

    Google Scholar 

  24. T. E. Sharp, At. Data 2 119 (1971).

    Article  ADS  Google Scholar 

  25. S. L. Guberman J. Chem. Phys. 78 1404 (1983).

    Article  ADS  Google Scholar 

  26. P. Lambropoulos, Phys. Rev. Lett. 55 2141 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dixit, S.N., McKoy, V. (1990). Molecules in Intense Laser Fields. In: Nicolaides, C.A., Clark, C.W., Nayfeh, M.H. (eds) Atoms in Strong Fields. NATO ASI Series, vol 212. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9334-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9334-5_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9336-9

  • Online ISBN: 978-1-4757-9334-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics