The Keldysh Theory of Strong Field Ionization and its Extensions

  • H. R. Reiss
Part of the NATO ASI Series book series (NSSB, volume 212)


This paper starts with a concise history of the development of the Keldysh approximation and an overview of its more important general properties, and then a number of new developments are reported as well. These developments include the examination of an exhaustive list of possible S-matrix theories that may be applied to photoionization, and the identification of those among them that are suitable for the strong-field case. Emphasis is placed on the general distinctions between phenomena in different intensity regimes. Intensity limits are given for: the convergence of perturbation theory; the applicability of the electric dipole approximation; the utility of one-dimensional models; the validity of non-relativistic theories; and the separability of the equations of motion. A relativistic version of the Keldysh theory is introduced.


Intensity Parameter Schr6dinger Equation Contact Transformation Intensity Domain Initial Atomic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. V. Keldysh, Sov Phys.-JETP 20 1307 (1965).MathSciNetGoogle Scholar
  2. 2.
    V. Nathan, A. H. Guenther, and S. S. Mitra, J. Opt. Soc. Am. B 2, 294 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    H. D. Jones and H. R. Reiss, Phys Rev. B 16 2466 (1977).ADSCrossRefGoogle Scholar
  4. 4.
    D. M. Volkov, Z. Phys. 94, 250 (1935).ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    F. H. M. Faisal, J. Phys. B 6, L89 (1973).ADSCrossRefGoogle Scholar
  6. 6.
    H. R. Reiss, Phys Rev. A 22 1786 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    H. G. Müller, A. Tip, and M. J. van der Wiel, J. Phys. B 16, L679 (1983).Google Scholar
  8. 8.
    P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman, Phys. Rev Lett. 42 1127 (1979).ADSCrossRefGoogle Scholar
  9. 9.
    P. Kruit, J. Kimman, H. G. Müller, and M. J. van der Wiel, Phys. Rev. A 28, 248 (1983).ADSCrossRefGoogle Scholar
  10. 10.
    P. H. Bucksbaum, M. Bashkansky, R. R. Freeman, T. J. Mcllrath, and L. F. DiMauro, Phys. Rev Lett. 56 2590 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    H. R. Reiss, in Photons and Continuum States of Atoms and Molecules, N. K. Rahman, C. Guidotti, and M. Allegrini, eds. (Springer-Verlag, Berlin, 1987).Google Scholar
  12. 12.
    H. R. Reiss, J. Phys. B 20, L79 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    U. Johann, T. S. Luk, H. Egger, and C. K. Rhodes, Phys Rev. A 34 1084 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    M. D. Perry, A. Szöke, O. L. Landen, and E. M. Campbell, Phys. Rev. Lett. 60, 1270 (1988).ADSCrossRefGoogle Scholar
  15. 15.
    F. Yergeau, S. L. Chin, P. Lavigne, J Phys. B 20 723 (1987).ADSCrossRefGoogle Scholar
  16. 16.
    S. L. Chin, C., Rolland, P. B. Corkum, and P. Kelly, Phys. Rev. Lett. 61, 153 (1988).ADSCrossRefGoogle Scholar
  17. 17.
    P. B. Corkum, N. H. Burnett, and F. Brunei, to be published.Google Scholar
  18. 18.
    L. A. Collins and A. L. Merts, Phys Rev. A 37 2415 (1988).ADSCrossRefGoogle Scholar
  19. 19.
    P. W. Milonni, Phys. Rev. A 38, 2682 (1988).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    W. Henneberger, Phys. Rev Lett. 21 838 (1968).ADSCrossRefGoogle Scholar
  21. 21.
    R. N. DeWitt, J. Phys. B 6, 803 (1973).ADSCrossRefGoogle Scholar
  22. 22.
    H. R. Reiss, Phys. Rev A 1, 803 (1970).ADSCrossRefGoogle Scholar
  23. H. R. Reiss, Phys. Rev A 23 3019 (1981).ADSCrossRefGoogle Scholar
  24. 23.
    H. R. Reiss, Bull. Am. Phys. Soc. 11, 96 (1966).Google Scholar
  25. H. R. Reiss, Bull. Am. Phys. Soc. 11, 332 (1966).Google Scholar
  26. 24.
    Th. Mercouris and C. A. Nicolaides, J. Phys. B 21, L285 (1988).ADSCrossRefGoogle Scholar
  27. 25.
    H. R. Reiss, to be published.Google Scholar
  28. 26.
    J. D. Bjorken and S. D. Drell, Relativistlc Quantum Mechanics (McGraw-Hill, New York, 1964).Google Scholar
  29. 27.
    H. S. Antunes Neto and L. Davidovich, Phys. Rev Lett. 53 2238 (1984).ADSCrossRefGoogle Scholar
  30. 28.
    P. W. Milonni and J. Ackerhalt, to be published.Google Scholar
  31. 29.
    H. R. Reiss and D. J. Land, to be published.Google Scholar
  32. 30.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1975).Google Scholar
  33. 31.
    E. S. Sarachik and G. T. Schappert, Phys Rev. D 1 2738 (1970).ADSCrossRefGoogle Scholar
  34. 32.
    J. Javanainen and J. H. Eberly, to be published.Google Scholar
  35. 33.
    H. R. Reiss, Phys Rev. A 29 698 (1984).ADSCrossRefGoogle Scholar
  36. 34.
    H. R. Reiss, to be published.Google Scholar
  37. 35.
    H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Springer-Verlag, Berlin, 1957).CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • H. R. Reiss
    • 1
  1. 1.Department of PhysicsThe American UniversityUSA

Personalised recommendations