Nonperturbative Treatment of Molecule-Radiation Interactions — A Coupled Equations Approach

  • André D. Bandrauk
Part of the NATO ASI Series book series (NSSB, volume 212)


Traditional molecular spectroscopy is interpreted usually in terms of perturbative treatments of matter-radiation interactions. In such approximations, radiative transitions are visualized as transitions between unperturbed eigenstates, i.e., free molecular states. With present laser intensities (I > 1010 W/cm2), one can question the validity of such approximations. In atomic spectroscopy, multiphoton transitions and nonlinear effects have been considered in the dressed atom picture [1–2]. The basic idea of this model is that the total energy of the system, field plus atom, must be conserved. The eigenstates of the time independent Schroedinger equation for the total system are therefore the proper states, the dressed states, to be used to describe the time evolution of the total system. The simple two level dressed atomic model leads to the prediction of optical Stark effects which has been observed experimentally [3–5].


Schroedinger Equation Radiative Coupling Internuclear Axis Electronic Angular Momentum Optical Stark Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Cohen-Tannoudji, in Frontiers in Laser Spectroscopy, edited by R. Balian, S. Haroche (North-Holland, Amsterdam (1975)), p. 1.Google Scholar
  2. 2.
    M. Jacon, Phys. Rev. A25, 2038 (1982).ADSCrossRefGoogle Scholar
  3. 3.
    F. Sahuda, C.R. Stroud, M. Hercher, J. Phys. B7, L198 (1974).ADSGoogle Scholar
  4. 4.
    F.Y. Wu, T.E. Grove, S. Ezekiel, Phys. Rev. Lett. 35, 1426 (1975).ADSCrossRefGoogle Scholar
  5. 5.
    S.E. Moody M. Lambropoulos Phys. Rev. A15 1497 1977ADSCrossRefGoogle Scholar
  6. 6.
    N.M. Kroll, K.M. Watson, Phys. Rev. A13, 1018 (1976).ADSCrossRefGoogle Scholar
  7. 7.
    A.I. Voronin, A.A. Samokhin, Sov. Phys. JETP 43, 4 (1976).ADSGoogle Scholar
  8. 8.
    A.M.F. Lau, Phys. Rev. A13, 139 (1976).ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Yuan, T.F. George, J. Chem. Phys. 68, 3040 (1978).ADSCrossRefGoogle Scholar
  10. 10.
    A.D. Bandrauk, M.L. Sink, Chem. Phys. Lett. 57, 569 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    A.D. Bandrauk, M.L. Sink, J. Chem. Phys. 74 1110 (1981).ADSCrossRefGoogle Scholar
  12. 12.
    K. Kodama, A.D. Bandrauk, Chem. Phys. 51, 461 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    A.D. Bandrauk, G. Turcotte, J. Phys. Chem. 87, 5098 (1983).CrossRefGoogle Scholar
  14. 14.
    A.D. Bandrauk, M. Giroux, G. Turcotte, J. Phys. Chem. 89, 4473 (1985).CrossRefGoogle Scholar
  15. 15.
    A.D. Bandrauk, G. Turcotte, Chem. Phys. Lett. 94, 175 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    M. Shapiro, J. Chem. Phys. 56, 2582 (1972).ADSCrossRefGoogle Scholar
  17. 17.
    O. Atabek, M. Jacon, R. Lefebvre, J. Chem. Phys. 72, 2670 (1980).ADSCrossRefGoogle Scholar
  18. 18.
    A.D. Bandrauk, G. Turcotte, R. Lefebvre, J. Chem. Phys. 76, 225 (1982).ADSCrossRefGoogle Scholar
  19. 19.
    A.D. Bandrauk, N. Gélinas, J. Chem. Phys. 86, 5257 (1987).ADSCrossRefGoogle Scholar
  20. 20.
    A.D. Bandrauk, M.S. Child, Molec. Phys. 19, 95 (1970).ADSCrossRefGoogle Scholar
  21. 21.
    A.D. Bandrauk, M.L. Sink, J. Chem. Phys. 66, 5313 (1977).ADSCrossRefGoogle Scholar
  22. 22.
    A.D. Bandrauk, O. Atabek, J. Phys. Chem. 91, 6469 (1987).CrossRefGoogle Scholar
  23. 23.
    A.D. Bandrauk, J. McCann, Comments in Atom, and Molec. Phys., to be published 1989.Google Scholar
  24. 24.
    W.H. Flygare, Molecular Structure and Dynamics (Prentice-Hall, N.J. 1978), chap. 6.Google Scholar
  25. 25.
    H. Lefebvre-Brion, R.W. Field, Perturbations in the Spectra of Diatomic Molecules (Academic Press, Orlando 1987).Google Scholar
  26. 26.
    M. Mizushima, Theory of Rotating Diatomic Molecules (Wiley, N.Y. 1975).Google Scholar
  27. 27.
    R.N. Zare, J. Mol. Spectry. 46, 37 (1973).ADSCrossRefGoogle Scholar
  28. 28.
    J.T. Hougen, NBS Monograph 115, US Govern. Printing Office, Washington (1970).Google Scholar
  29. 29.
    M.E. Rose, Elementary Theory of Angular Momentum, (J. Wiley, N.Y. (1957)), p. 52.zbMATHGoogle Scholar
  30. 30.
    A.S. Davydov, Quantum Mechanics (Pergamon Press, Oxford 1976).Google Scholar
  31. 31.
    T.D. Lee, Particle Physics and Introduction to Field Theory (Harwood-Academic, N.Y., 1981), chap. 6.Google Scholar
  32. 32.
    E. Goldin, Waves and Photons, (John Wiley, N.Y. 1988).Google Scholar
  33. 33.
    T.T. Nguyen-Dang, A.D. Bandrauk, J. Chem. Phys. 79, 3256 (1983).ADSCrossRefGoogle Scholar
  34. T.T. Nguyen-Dang, A.D. Bandrauk, J. Chem. Phys. 80, 4926 (1984).ADSCrossRefGoogle Scholar
  35. 34.
    D.W. Norcross, M.J. Seaton, J. Phys. B6, 614 (1973).ADSGoogle Scholar
  36. 35.
    R. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, N.Y. 1966).Google Scholar
  37. 36.
    M.S. Child, Molecular Collision Theory (Academic Press, London (1974)).Google Scholar
  38. 37.
    L. Mower, Phys. Rev. 142, 799 (1966).ADSCrossRefGoogle Scholar
  39. 38.
    A.D. Bandrauk, J.P. Laplante, Can. J. Phys. 55, 1 (1977).ADSGoogle Scholar
  40. 39.
    K.M. Watson, J. Nuttall, Topics in Several Particle Dynamics (Holden-Day, San Francisco, 1967).Google Scholar
  41. 40.
    A.D. Bandrauk, O. Atabek in Advances in Chemical Physics, edit. J. Hirschfelder (Academic Press, N.Y. 1989), vol. 73, chap. 19.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • André D. Bandrauk
    • 1
  1. 1.Département de chimie Faculté des sciencesUniversité de SherbrookeSherbrookeCanada

Personalised recommendations