Advertisement

Hydrogen Atom in a Uniform Magnetic Field — A Hamiltonian System Exhibiting Chaos

  • H. Friedrich
Part of the NATO ASI Series book series (NSSB, volume 212)

Abstract

The term “chaos” is applied to the dynamic evolution of a system depending extremely sensitively on the initial conditions. The evolution of a system is said to be chaotic if an infinitessimally small deviation in the initial conditions grows exponentially during the course of the evolution. Even if the laws governing the evolution are strictly deterministic, the exponential growth of small uncertainties means that the evolution becomes de facto unpredictable after a certain time [1]. Although exact mathematical proofs are still rare, advances in computer technology have made it possible to study classical motion in small systems in considerable detail, and it has become increasingly clear that even seemingly simple systems with few degrees of freedom generally show chaotic behaviour. For these reasons, chaos has now become a major field in physics.

Keywords

Periodic Orbit Uniform Magnetic Field Classical Dynamic Photoabsorption Cross Section Quantum Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Lighthill, Proc. Roy. Soc. London A 407 (1986) 35.ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    Ya.G. Sinai, Russ. Math. Surv. 25 (1970) 137.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    L.A. Bunimovich, Funct. Anal. Appl. 8 (1974) 254.CrossRefzbMATHGoogle Scholar
  4. L.A. Bunimovich, Commun. Math. Phys. 65 (1979) 295.MathSciNetADSCrossRefzbMATHGoogle Scholar
  5. [4]
    G. Benettin, Physica 13D (1984) 211.MathSciNetADSGoogle Scholar
  6. [5]
    M. Henon and C. Heiles, Astron. J. 69 (1964) 73.MathSciNetADSCrossRefGoogle Scholar
  7. [6]
    K.H. Welge, lectures at this school.Google Scholar
  8. [7]
    M.V. Berry, in: Chaotic Behaviour of Deterministic Systems, eds. G. Iooss, R.H.G. Helleman and R. Stora (North Holland, Amsterdam, 1983) pp. 172–271.Google Scholar
  9. [8]
    O. Bohigas and M.-J. Giannoni, in: Mathematical and Computational Methods in Nuclear Physics, Lecture Notes in Physics vol. 209, ed. J.S. Dehesa, J.M.G. Gomez and A. Polls (Springer, Berlin, 1984) pp. 1–99.CrossRefGoogle Scholar
  10. [9]
    H.-D. Meyer, J. Chem. Phys. 84 (1986) 3147.MathSciNetADSCrossRefGoogle Scholar
  11. [10]
    A.J. Lichtenberg and M.A. Liberman, Regular and Stochastic Motion (Springer, Berlin, 1983).CrossRefzbMATHGoogle Scholar
  12. [11]
    R.A. Horn and C.A. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985).CrossRefzbMATHGoogle Scholar
  13. [12]
    A.N. Kolmogorov, Dokl. Akad. Nauk. 98 (1954) 527.MathSciNetzbMATHGoogle Scholar
  14. [13]
    V.l. Arnol’d, Russ. Math. Surv. 5 (1963) 13.Google Scholar
  15. V.l. Arnol’d, Russ. Math. Surv.. 6 (1963) 61.Google Scholar
  16. [14]
    J. Moser, Nachr. Akad. Wiss. Göttingen 1 (1962) 1.Google Scholar
  17. [15]
    K.A.U. Lindgren and J.T. Virtamo, J. Phys. B 12 (1979) 3465.ADSCrossRefGoogle Scholar
  18. B.G.S. Doman, J. Phys. B 13 (1980) 3335.ADSCrossRefGoogle Scholar
  19. [16]
    R.H. Garstang, Rep. Prog. Phys. 40 (1977) 105.ADSCrossRefGoogle Scholar
  20. [17]
    G. Wunner H. Ruder and H. Herold Z. Phys. 79A (1980) 159Google Scholar
  21. G. Wunner, H. Ruder and H. Herold, Astrophys. J. 247 (1981) 374.ADSCrossRefGoogle Scholar
  22. H. Herold, H. Ruder and G. Wunner, J. Phys. B 14 (1981) 751.ADSCrossRefGoogle Scholar
  23. M. Vincke and D. Baye, J. Phys. B 21 (1988) 2407.ADSCrossRefGoogle Scholar
  24. [18]
    R.A. Pullen, D. Phil, thesis, Imperial College, London, 1981 (unpublished).Google Scholar
  25. [19]
    M. Robnik, J. Phys. A 14 (1981) 3195.ADSCrossRefGoogle Scholar
  26. M. Robnik, J. de Physique (Paris) Colloque C2, suppl. 11, Tome 43 (1982) C2–45.MathSciNetGoogle Scholar
  27. [20]
    W.P. Reinhardt and D. Farrelly, J. de Physique (Paris) Colloque C2, suppl. 11, Tome 43 (1982) C2–29.MathSciNetGoogle Scholar
  28. [21]
    A. Harada and A. Hasegawa, J. Phys. A 16 (1983) L259.ADSCrossRefGoogle Scholar
  29. [22]
    J.B. Delos, S.K. Knudson and D.W. Noid, Phys. Rev. A 30 (1984) 1208.ADSCrossRefGoogle Scholar
  30. [23]
    M.A. Al-Laithy, P.F. O’Mahony and K.T. Taylor, J. Phys. B 19 (1986) L773.ADSCrossRefGoogle Scholar
  31. [24]
    D. Wintgen, J. Phys. B 20 (1987) L511.ADSCrossRefGoogle Scholar
  32. [25]
    W. Schweizer, R. Niemeier, H. Friedrich, G. Wunner and H. Ruder, Phys. Rev. A 38 (1988) 1724.ADSCrossRefGoogle Scholar
  33. [26]
    M.A.M. de Aguiar, C.P. Malta, M. Baranger and K.T.R. Davies, Ann. Phys. (N.Y.) 180 (1987) 167.ADSCrossRefzbMATHGoogle Scholar
  34. [27]
    H.C. Praddaude, Phys. Rev. A 6 (1972)1321.ADSCrossRefGoogle Scholar
  35. [28]
    J. Simola and J.T. Virtamo, J. Phys. B 11 (1978) 3309.ADSCrossRefGoogle Scholar
  36. [29]
    H. Friedrich, Phys. Rev. A 2626 (1982) 1827.ADSCrossRefGoogle Scholar
  37. [30]
    C.W. Clark and K.T. Taylor, J. Phys. B 15 (1982) 1175.ADSCrossRefGoogle Scholar
  38. [31]
    H. Friedrich and M. Chu, Phys. Rev. A 28 (1983) 1423.ADSCrossRefGoogle Scholar
  39. M.-C. Chu and H. Friedrich, Phys. Rev. A 28 (1983) 3651.ADSCrossRefGoogle Scholar
  40. M.-C. Chu and H. Friedrich, Phys. Rev. A 29 (1984) 675.ADSCrossRefGoogle Scholar
  41. [32]
    C.H. Greene, Phys. Rev. A 2828 (1983) 2209.ADSCrossRefGoogle Scholar
  42. [33]
    S.K. Battacharya and S.I. Chu, J. Phys. B 16 (1983) L471.ADSCrossRefGoogle Scholar
  43. S.K. Battacharya and S.I. Chu, J. Phys. B 18 (1985) L275.ADSCrossRefGoogle Scholar
  44. [34]
    W. Rösner, G. Wunner, H. Herold and H. Ruder, J. Phys. B 17 (1984) 29.ADSCrossRefGoogle Scholar
  45. [35]
    D. Wintgen and H. Friedrich, J. Phys. B 19 (1986) 991.ADSCrossRefGoogle Scholar
  46. [36]
    D. Wintgen and H. Friedrich, J. Phys. B 19 (1986) 1261.ADSCrossRefGoogle Scholar
  47. [37]
    A. Holle, G. Wiebusch, J. Main, K.H. Welge, G. Zeller, G. Wunner, T. Ertl and H. Ruder, Z. Phys. D 5 (1987) 279.ADSCrossRefGoogle Scholar
  48. [38]
    K.T. Taylor, lectures at this school.Google Scholar
  49. [39]
    E.A. Solov’ev, JETP Lett. 3435 (1981) 265.ADSGoogle Scholar
  50. [40]
    C.W. Clark, Phys. Rev. A 24 (1981) 605.ADSCrossRefGoogle Scholar
  51. [41]
    D. Delande and J.C. Gay, J. Phys. B 17 (1984) L335.MathSciNetADSCrossRefGoogle Scholar
  52. [42]
    D.R. Herrick, Phys. Rev. A 26 (1982) 323.MathSciNetADSCrossRefGoogle Scholar
  53. [43]
    N. Rosenzweig and C.E. Porter, Phys. Rev. 120 (1960) 1698.ADSCrossRefGoogle Scholar
  54. [44]
    S.W. McDonald and A.N. Kaufmann, Phys. Rev. Lett. 42 (1979) 1189.ADSCrossRefGoogle Scholar
  55. [45]
    H. Koppel, W. Domcke and L. Cederbaum, in: Advances in Chemical Physics, vol. 57, ed. I. Prigogine and S.S. Rice (John Wiley, New York, 1984) p. 1.Google Scholar
  56. [46]
    T.H. Seligman, J.J.M. Verbaarschot and M. Zirnbauer, Phys. Rev. Lett. 53 (1984) 215.ADSCrossRefGoogle Scholar
  57. [47]
    H.G. Schuster, Deterministic Chaos, (Physik-Verlag, Weinheim, 1984).zbMATHGoogle Scholar
  58. [48]
    M.V. Berry and M. Robnik, J. Phys. A 17 (1984) 2413.MathSciNetADSCrossRefzbMATHGoogle Scholar
  59. [49]
    F.J. Dyson and M.L. Mehta, J. Math. Phys. 4 (1963) 701.MathSciNetADSCrossRefzbMATHGoogle Scholar
  60. [50]
    D. Wintgen and H. Friedrich, Phys. Rev. Lett. 57 (1986) 571.ADSCrossRefGoogle Scholar
  61. [51]
    D. Delande and J.-C. Gay, Phys. Rev. Lett. 57 (1986) 2006.ADSCrossRefGoogle Scholar
  62. [52]
    G. Wunner, U. Woelk, I. Zech, G. Zeller, T. Ertl, F. Geyer, W. Schweizer and H. Ruder, Phys. Rev. Lett. 57 (1986) 3261.ADSCrossRefGoogle Scholar
  63. [53]
    D. Wintgen and H. Friedrich, Phys. Rev. A 35 (1987) 1464.ADSCrossRefGoogle Scholar
  64. [54]
    D. Wintgen and H. Friedrich, in: Atomic Spectra and Collisions in External Fields 2, ed. K.T. Taylor (Plenum, New York, 1989).Google Scholar
  65. [55]
    A. Honig and D. Wintgen, preprint, December 1988.Google Scholar
  66. [56]
    W.R.S. Garton and F.S. Tomkins, Astrophys. J. 158 (1969) 839.ADSCrossRefGoogle Scholar
  67. [57]
    A.R. Edmonds, J. de Phys. (Paris), Colloque 31 (1970) C4–71.Google Scholar
  68. [58]
    A.R.P. Rau, Phys. Rev. A 16 (1977) 613.ADSCrossRefGoogle Scholar
  69. [59]
    U. Fano, Phys. Rev. A 22 (1980) 2260.ADSGoogle Scholar
  70. [60]
    M.V. Berry and K.E. Mount, Rep. Prog. Phys. 35 (1972) 315.ADSCrossRefGoogle Scholar
  71. [61]
    D. Wintgen and H. Friedrich, J. Phys. B 10 (1986) L99.CrossRefGoogle Scholar
  72. [62]
    G. Wunner, G. Zeller, U. Woelk, W. Schweizer, R. Niemeier, F. Geyer, H. Friedrich and H. Ruder, in: Atomic Spectra and Collisions in External Fields 2, ed. K.T. Taylor (Plenum, New York, 1989).Google Scholar
  73. [63]
    A. Holle, G. Wiebusch, J. Main, B. Hager, H. Rottke and K.H. Welge, Phys. Rev. Lett. 56 (1986) 2594.ADSCrossRefGoogle Scholar
  74. [64]
    J. Main, G. Wiebusch, A. Holle and K.H. Welge, Phys. Rev. Lett. 57 (1986) 2789.ADSCrossRefGoogle Scholar
  75. [65]
    W.P. Reinhardt, J. Phys. B 16 (1983) L635.ADSCrossRefGoogle Scholar
  76. [66]
    D. Wintgen and H. Friedrich, Phys. Rev. A 36 (1987) 131.ADSCrossRefGoogle Scholar
  77. [67]
    D. Wintgen, Phys. Rev. Lett. 58 (1987) 1589.ADSCrossRefGoogle Scholar
  78. [68]
    M.C. Gutzwiller, J. Math. Phys. 8 (1967) 1979.ADSCrossRefGoogle Scholar
  79. M.C. Gutzwiller, J. Math. Phys. 10 (1969) 1004.ADSCrossRefGoogle Scholar
  80. M.C. Gutzwiller, J. Math. Phys. 11 (1970) 1791.ADSCrossRefGoogle Scholar
  81. M.C. Gutzwiller, J. Math. Phys. 12 (1971) 343.ADSCrossRefGoogle Scholar
  82. [69]
    R. Balian and C. Bloch, Ann. Phys. (N.Y.) 60 (1970) 401.MathSciNetADSCrossRefzbMATHGoogle Scholar
  83. R. Balian and C. Bloch, Ann. Phys. (N.Y.) 64 (1971) 271.MathSciNetADSCrossRefzbMATHGoogle Scholar
  84. R. Balian and C. Bloch, Ann. Phys. (N.Y.) 69 (1972) 76.MathSciNetADSCrossRefzbMATHGoogle Scholar
  85. R. Balian and C. Bloch, Ann. Phys. (N.Y.) 85 (1974) 514.MathSciNetADSCrossRefzbMATHGoogle Scholar
  86. [70]
    M.L. Du and J.B. Delos, Phys. Rev. Lett. 58 (1987) 1731.ADSCrossRefGoogle Scholar
  87. M.L. Du and J.B. Delos, Phys. Rev. A 38 (1988) 1896; 1931.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • H. Friedrich
    • 1
  1. 1.Physik-DepartmentTechnische Universität MünchenGarchingW. Germany

Personalised recommendations