Atoms in Strong Fields pp 231-245 | Cite as
Chaos in Quantum Dynamics: An Overview
Abstract
We discuss the quantum behaviour of systems which exhibit deterministic chaos in the classical limit. To this end we first examine the motion of a rotator under an external time-periodic δ-like perturbation. When the perturbation is strong enough, the classical motion is chaotic and diffusive while the quantum excitation remains strongly localized. A similar phenomenon takes place in the more physical problem of an hydrogen atom irradiated by a linearly polarized microwave field. In this latter case however, there exists a critical value of the microwave field intensity above which localization is destroyed and strong quantum excitation takes place. Numerical computations confirm the above theoretical predictions which also agree with the experimental results so far available.
Keywords
Wave Packet Chaotic Motion Microwave Field Anderson Localization Classical MotionPreview
Unable to display preview. Download preview PDF.
References
- 1.For a clear and readable discussion see; Moser J., 1968, Memoirs Am. Math. Soc., No 81.Google Scholar
- 2.Chirikov B.V., 1979, Phys. Rep. 52 263.MathSciNetADSCrossRefGoogle Scholar
- 3.Ford J, Walker G.H., 1969, Phys. Rev. 188 416.MathSciNetADSCrossRefGoogle Scholar
- 4.Henon H., Heiles C, 1964, Astron. J. 69 73.MathSciNetADSCrossRefGoogle Scholar
- 5.Ford J., Physics Today, April 1983.Google Scholar
- 6.Casati G., Guarneri I. and Vivaldi F., 1983, Phys. Rev. Lett. 51 727.MathSciNetADSCrossRefGoogle Scholar
- 7.Percival I.C., 1973, J. Phys. B L. 229.Google Scholar
- 8.Proceedings of the II International Conference on Quantum Chaos, eds. T.H. Seligman and H. Nishioka, Lectures Notes, Physics Vol. 263.Google Scholar
- 9.G. Casati, B.V. Chirikov, F.M. Izrailev, J. Ford in “Stochastic Behaviour in Classical and Quantum Hamiltonian Systems”, Como, June 1977, Lectures Notes in Physics, Springer 93. (1979), 334.MathSciNetADSCrossRefGoogle Scholar
- 10.G. Casati, J. Ford. I. Guarneri, F. Vivaldi Phys. Rev. A 34 (1986) 1413.ADSCrossRefGoogle Scholar
- 11.B.V. Chirikov, F.M. Izrailev, and D.L. Shepelyansky, (1981) Sov. Sci. Rev. Sec. C 2, 209.MathSciNetMATHGoogle Scholar
- 12.G.P. Brivio, G. Casati, L. Perotti, I. Guarneri, Physica D 33 (1988) 51.MathSciNetADSCrossRefMATHGoogle Scholar
- 13.S. Fishman, D.R. Grempel and R.E. Prange, 1982, Phys. Rev. Lett. 12, 509.MathSciNetADSCrossRefGoogle Scholar
- S. Fishman, D.R. Grempel and R.E. Prange, 1984. Phys. Rev. A 22. 1639.Google Scholar
- 14.J.E. Bayfield, P.M. Koch, Phys. Rev. Lett. 33. (1974) 258.ADSCrossRefGoogle Scholar
- 15.J.C. Leopold, I.C. Percival, Phys. Rev. Lett. 41 (1978) 944.ADSCrossRefGoogle Scholar
- 16.G. Casati, I. Guarneri and D.L. Shepelyansky, Phys. Rev. A 36 (1987) 3501.ADSCrossRefGoogle Scholar
- 17.G. Casati, I. Guarneri, D. Shepelyansky, J.E.E.E. J. of Quantum Electr. 24 (1988) 1420.ADSCrossRefGoogle Scholar
- 18.G. Casati, B.V. Chirikov, I. Guarneri, D.L. Shepelyansky, Physics Report 154 (1987). 77.Google Scholar
- 19.G. Casati. B.V. Chirikov, D.L. Shepelyansky, Phys. Rev. Lett. 53 (1984) 2525.ADSCrossRefGoogle Scholar
- 20.R.V. Jensen, Phys. Rev. A 30 (1984) 386.ADSCrossRefGoogle Scholar
- 21.K. van Leeuwen, G. v. Oppen, S. Renwick, J. Bowlin, P. Koch, R. Jensen, O. Rath, D. Richards, G. Leopold, Phys. Rev. Lett. 55 (1985) 2231.ADSCrossRefGoogle Scholar
- 22.R. Blumel, U. Smilansky, Phys. Rev. Lett. 58 (1987) 2531.ADSCrossRefGoogle Scholar
- 23.P. Koch, private communication.Google Scholar
- 24.J.E. Bayfield, G. Casati, I. Guarneri, D.V. Sokol: “Localization of classically chaotic diffusion for Hydrogen Atoms in Microwave Fields”. Preprint.Google Scholar
- 25.E.J. Galvey, B.E. Sauer, L. doorman, P.M. Koch, D. Richards; “Microwave lonization of H Atoms; Breakdown of Classical Dynamics for High Frequencies”. Preprint.Google Scholar
- 26.R. Blumel, R. Graham, L. Sirko, U. Smilansky, H. Walther, K. Yamada; “Microwave excitation of Rydberg atoms in the presence of noise”, Preprint.Google Scholar