Atomic Resolution Ultrahigh Vacuum Scanning Tunneling Microscopy of Diamond (100) Epitaxial Films

  • R. E. Stallcup
  • L. M. Villarreal
  • A. F. Aviles
  • J. M. Perez


Atomic images of epitaxial (100) diamond were obtained in ultrahigh vacuum (UHV) with a scanning tunneling microscope (STM). The dimer row spacing, inner dimer pair, and single atomic step height were measured to be 0.5 nm, 0.25 nm and 0.1 nm respectively. Different forms of amorphous carbon were also observed in UHV. Some forms appeared to be randomly oriented others appeared chain-like. A radial reconstruction 1.5 nm in diameter was found on a 20° slope to a group of (100) 2x1 reconstructions. Current vs voltage spectrum was obtained in UHV and showed the electronic characteristics of the film. The Raman spectrum of the diamond film showed sp2 and sp3 peaks.


Diamond Film Epitaxial Film Scanning Tunneling Microscope Image Diamond Surface Chemical Vapor Deposition Diamond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harris Corporation, 100 Stierli Court Suite 106, Mount Arlington, NJ. 07856.Google Scholar
  2. 2.
    T. Tsuno, T. Tomikawa, and S. Shikata, Diamond homoepitaxial growth on (111) substrate investigated by scanning tunneling microscope, J. Appl. Phys., 75: 1526–1529 (1994).CrossRefGoogle Scholar
  3. 3.
    Burleigh Instruments, Inc., Burleigh Park, P.O. Box E, Fishers, NY 14453–0755.Google Scholar
  4. 4.
    P. J. Bryant, H. S. Kim, Y. C. Zheng, and R. Yang, Technique for shaping scanning tunneling microscope tips, Rev. Sci. Instrum., 58 (6): 11–15 (1987).CrossRefGoogle Scholar
  5. 5.
    T. Tsuno, T. Imai, Y. Nishibayashi, K. Hamada and N. Fujimori. 1991. Epitaxially grown diamond (001) 2x1/1x2 surface investigated by scanning tunneling microscopy in air, Jap. J. Apl. Phys., 30: 1063–1066.CrossRefGoogle Scholar
  6. 6.
    P.G. Lurie and J.M. Wilson, The diamond surface, Surface Science, 65: 453–475 (1977).CrossRefGoogle Scholar
  7. 7.
    N. H. Cho, D. K. Veirs, J. W. Ager III, M. D. Rubin, and C. B. Hopper, Effects of substrate temperature on chemical structure of amorphous carbon films, J. Appl. Phys., 71 (5): 2243–2248 (1992).CrossRefGoogle Scholar
  8. 8.
    A.F. Aviles, R. E. Stallcup, W. Rivera, and J. M. Perez, Scanning tunneling microscopy of chemical vapor deposition diamond film growth on highly-oriented-pyrolytic graphite and Si, This conference proceedings.Google Scholar
  9. 9.
    J. M. Perez, C. Lin, W. Rivera, R. C. Hyer, M. Green, S. C. Sharma, D. R. Chopra and A. R. Chourasia, Scanning tunneling microscopy of the electronic structure of chemical vapor deposited diamond films, Appl. Phys. Lett.,62(16):1889–1891(1993).CrossRefGoogle Scholar
  10. 10.
    B. E. Williams, J T Glass, R. F. Davis, K. Kobashi and Y. Kawate, Electron Microscopy of diamond films grown by microwave PECVD, in “Extended abstracts, diamond-like materials synthesis”, Johnson, Badzian and Geis, eds., Material Research Society, Pittsburgh (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • R. E. Stallcup
    • 1
  • L. M. Villarreal
    • 1
  • A. F. Aviles
    • 1
  • J. M. Perez
    • 1
  1. 1.Physics DepartmentUniversity of North TexasDentonUSA

Personalised recommendations