Advances in Piezoresistive Cantilevers for Atomic Force Microscopy

  • M. Tortonese

Abstract

Piezoresistive cantilevers offer a novel detection scheme for Atomic Force Microscopy (AFM) in which no optics and no alignments are required to measure the deflection of the cantilever. The cantilever deflection is measured through the resistance of a stress sensitive resistor—a piezoresistor—integrated in the silicon cantilever. The use of piezoresistive cantilevers simplifies the operation of the microscope, especially for applications in ultrahigh vacuum (UHV) and at low temperature, where other detection schemes are difficult to implement. This paper reviews the principle of operation of piezoresistive cantilevers and presents recent results obtained using piezoresistive cantilevers for imaging in air, in water, in ultra high vacuum, at low temperature, on magnetic samples, for lateral force microscopy, in-contact and noncontact modes.

Keywords

Atomic Force Microscopy Spring Constant Scanning Force Microscope Silicon Cantilever Tunneling Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Ginnig, C.F. Quate, and Ch. Gerber, Atomic force microscope, Phys. Rev. Lett., 56: 930–933 (1986).CrossRefGoogle Scholar
  2. 2.
    R. Erlandsson, G.M. McClelland, C.M. Mate, S. Chiang, Atomic force microscopy using optical intcrferometry, J. Vac. Sci. Technol. A, 6: 266–270 (1988).CrossRefGoogle Scholar
  3. 3.
    D. Rugar, H.J. Mamin, R. Erlandsson, J.E. Stem, B.D.Ten-is, Force microscope using a fiber-optic displacement sensor, Rev. Sci. Instrum., 59: 2337–2340 (1988).CrossRefGoogle Scholar
  4. 4.
    T. GOddenhenrich, H. Lemke, U. Hartmann, C. Heiden, Force microscope with capacitive displacement sensor, J. Vac. Sci. Technol. A, 8: 383–387 (1990).CrossRefGoogle Scholar
  5. 5.
    G. Neubauer, S.R. Cohen, G.M. McClelland, C.M. Mate, Force microscopy with a bidirectional capacitance sensor, Rev. Sci. Instron,., 61: 2296–2308 (1990).CrossRefGoogle Scholar
  6. 6.
    G. Meyer, N.M. Amer, Novel optical approach to atomic force microscopy, Appl. Phys. Lett., 53: 1045–1047 (1988).CrossRefGoogle Scholar
  7. 7.
    RC. Barrett, Ph.D. Dissertation, Stanford University (1991).Google Scholar
  8. 8.
    D. Sarid, P. Pax, L.Yi, S. Howells, M. Gallagher, T. Chen, V. Elings, D. Bocek,Improved atomic force microscope using a laser diode interferometer, Rev. Sci. Instrum., 63: 3905–3908 (1992).CrossRefGoogle Scholar
  9. 9.
    J.13rugger, R.A. Buser, N.F. de Rooij, Micromachined atomic force microprobe with integrated capacitive read-out, J. Micromech. Microeng., 2: 218–220 (1992).CrossRefGoogle Scholar
  10. 10.
    J. Tansock, C.C. Williams, Force measurement with a piezoelectric cantilever in a scanning force microscope, Ultramicroscopy, 42–44: 1464–1469 (1992).CrossRefGoogle Scholar
  11. 11.
    T. Itoh, T. Sups, Force sensing microcantilever using sputtered zinc oxide thin film, Appl. Phys. Lett., 64: 37–39 (1994).CrossRefGoogle Scholar
  12. 12.
    C.S. Smith, Piezoresistance effect in germanium and silicon, Phys. Rev., 94: 42–49 (1954).CrossRefGoogle Scholar
  13. 13.
    S. Middelhoek, Silicon sensors, Academic Press (1989).Google Scholar
  14. 14.
    M. Tortonese, R.C. Barrett, C.F. Quate, Atomic resolution with an atomic force microscope using piezoresistive detection, Appl. Phys. Lett., 62: 834–836 (1993).CrossRefGoogle Scholar
  15. 15.
    F.J. Giessibl, B.M. Trafas, Piezoresistive cantilevers utilized for scanning tunneling and scanning force microscope in ultrahigh vacuum, Rev. Sci. Instnun., 65: 1923–1929 (1994).CrossRefGoogle Scholar
  16. 16.
    F.J. Giessibl, Atomic force microscopy in ultrahigh vacuum, Jpn. J. Appl. Phys., 33: 3726–3734 (1994).CrossRefGoogle Scholar
  17. 17.
    Y.Martin, C.C. Williams, H.K. Wickramasinghe, Atomic force microscope-force mapping and profiling on a sub 100-A scale, J. Appl. Phys. 61: 4723–4729 (1987).CrossRefGoogle Scholar
  18. 18.
    Q. Zhong, D. Inniss, K. Kjoller, V.B.Elings, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy, Surf. Sci. Lett., 290: L688 - L692 (1993).CrossRefGoogle Scholar
  19. 19.
    F.J. Morin, T.H. Geballe, C. Hen’ing, Temperature dependence of the piezoresistance of high-purity silicon and germanium, Phys. Rev. 105: 525–539 (1957).CrossRefGoogle Scholar
  20. 20.
    C.W. Yuan, E. Batalla, M. Zacher, A.L. de Lozanne, M.D. Kirk, M. Tortonese, Low temperature magnetic force microscope utilizing a piezoresistive cantilever, Appl. Phys. Lett.,in press (1994).Google Scholar
  21. 21.
    S. Minne, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • M. Tortonese
    • 1
  1. 1.Park Scientific InstrumentsSunnyvaleUSA

Personalised recommendations