Imaging Matrix Materials and Fundamental Lamellae Structure of Biogenic Aragonite
Abstract
Atomic force microscopy (AFM) has been used to image lamellae at the nanometer level of resolution in broken sections of otoliths of snapper (Pagrus major), hake (Macruronus novaezelandiae) and salmon (Oncorhynchus tshawytscha) as well as in abiogenic aragonite. In abiogenic aragonite the mean lamellae width is found to be 30 nm. Comparison of the values of lamellae widths obtained from the published literature showed no significant difference between the lamellae widths measured from atomic force and transmission electron microscopy of otoliths of hake (Macruronus novaezelandiae). There are, however, statistically significant differences in lamellae widths between species, that is, the mean lamellae width is in the order of snapper (80 nm) < hake (90 nm) < salmon (130 nm).
Keywords
Atomic Force Microscope Juvenile Salmon Oncorhynchus Tshawytscha Fish Otolith Transmission Electron Microscopy SectionPreview
Unable to display preview. Download preview PDF.
References
- 1.T. Dale, The labyrinthine mechanoreceptor organs of the cod Gadus morhua L. (Teleostei: Gadidac), Norw. J. Zool. 24: 85–125 (1976).Google Scholar
- 2.E.T. Degens, W.B. Deuser, and R.L. Haedrich, Molecular structure and composition of fish otoliths, Mar. Biol. 2: 105–113 (1969).CrossRefGoogle Scholar
- 3.R.R. FAY, The goldfish ear codes the axis of acoustic particle motion in three dimensions, Science 225: 951–953 (1980).CrossRefGoogle Scholar
- 4.Y. Mugiya, and T. Uchimure, Otolith resorption induced by anaerobic stress in the goldfish, Carassius auratus, J. Fish. Biol. 35: 813–818 (1989).CrossRefGoogle Scholar
- 5.D. Nolf, “Handbook of Paleoichthyology,” vol. 10, Otolithi piscium, Gustav Fisher Verlag, Stuttgart, New York (1985).Google Scholar
- 6.P.A.M. Gaemers, Taxonomic position of the cichlidae (Pices, Perciformes) as demonstrated by the morphology of their otoliths, Neth. J. Zool. 34: 566–595 (1984).CrossRefGoogle Scholar
- 7.D.G. Dunkelberger, J.M. Dean, and N. Watabe, The ultrastructure of the otolithic membrane and otolith in the juvenile mummichog, Fundulus hetevoclitus, J. Morphol. 163: 367–377 (1980).CrossRefGoogle Scholar
- 8.R.W. Gauldie, Phase differences between check ring locations in the orange roughly otolith Hoplostethus atlanticus), Can. J. Fish. Aquat. Sci. 47: 760–765 (1990a).CrossRefGoogle Scholar
- 9.R.W. Gauldie, The morphology and periodic structures of the otolith of the chinook salmon (Oncorhynchus tshawytscha) and temperature dependant variation in microscopic growth increment width, Acta. Zool., Stockh. 72: 159–179 (1991).CrossRefGoogle Scholar
- 10.R. Lecomte-Finiger, The crystalline ultrastructure of otoliths of the eel (A: anguilla L. 1758), J. Fish. Biol. 40: 181–190 (1992).CrossRefGoogle Scholar
- 11.N.M. Davies, R.W. Gauldie, S.A. Crane, and R.K. Thompson, Otolith ultrastructure of smooth orco Psuedocyttus maculatus and black oreo, Allocyttus sp., species, Fish. Bull. U.S. 86: 499–515 (1988).Google Scholar
- 12.T.B. Bagenal, Aging of fish, in: “Proceedings of an International Symposium,” Unwin Brothers l,td., Gresham Press, Old Woking, Surrey, England (1974).Google Scholar
- 13.D.A. Carlstrom, A crystallographic study of vertebrate otoliths, Biol. Bull., Woods Hole 125: 441463 (1963).Google Scholar
- 14.M.B. Strong, J.D. Neilson, J.J. Hunt, Aberrant crystallization of pollack (Pollachius virens) otoliths, Can. J. Fish. Aquat. Sci. 43: 1457–1463 (1986).CrossRefGoogle Scholar
- 15.K.P. Mulligan, and R.W. Gauldie, The biological significance of the variation in crystalline morph and habit of otoconia in elasmobranchs, Copeia 1989: 856–871 (1989).CrossRefGoogle Scholar
- 16.R.W. GAULDIE, Vaterite otoliths from the opah, Lampris immaculatus, and two species of sunfish, Mola mola and M. ramsayi, Acta Zool., Stockh. 71: 193–199 (1990b).CrossRefGoogle Scholar
- 17.R.W. Gauldie, and D.G.A. Nelson, Aragonite twinning and neuroprotein secretion are the cause of daily growth rings in fish otoliths, Comp. Biochem. Physiol. 90: 510–509 (1988).CrossRefGoogle Scholar
- 18.M.E. Marsh, and R.L. Sass, Aragonite twinning in the molluscan bivalve hinge ligament, Science 208: 1262–1263 (1980).CrossRefGoogle Scholar
- 19.R.W. Gauldie, The fine structure of check rings in the otolith of the New Zealand snapper Chrysophrys auratus), N.Z. J. Mar. Freshw. Res. 22: 273–278 (1988).CrossRefGoogle Scholar
- 20.R.W. Gauldie, D.G.A. Nelson. Otolith growth in fishes, Comp. Biochem. Physiol. 97: 119135 (1990).Google Scholar
- 21.R.W. Gauldie, G.C. Coote, K.P. Mulligan and I.F. West, A chemical probe of the microstructure organization of fish otoliths, Comp. Biochem. Physiol. 102: 533–545 (1992).CrossRefGoogle Scholar
- 22.R.W. Gauldie, Continuous and discontinuous growth in the otolith of Macruronus novaezelandiae (Merlucciidae: Teleostei) J. Morph. 216: 1–24 (1993).CrossRefGoogle Scholar
- 23.P.E. Hillner, A.J. Gratz, S. Manne, and P.K. Hansma, Atomic-scale imaging of calcite growthd dissolution in real time, Geology 20: 359–362 (1992).CrossRefGoogle Scholar
- 24.G. Friedbacher, P.K. Hansma, E. Ramli, and G.D. Stucky, Imaging powders with the Atomic force Microscope: from biominerals to commercial materials, Science 253: 1261–1263 (1991).CrossRefGoogle Scholar
- 25.A.L. Rachlin, G.S. Henderson, and M.C. Goh. An atomic force microscopy (AFM) study of the calcite cleavage plane: image averaging in Fourier space, Am. Mineral. 77: 904–910 (1992).Google Scholar
- 26.P.W. Grutter, Zimmerman-Edling and D. Brodbeck, Tip artifacts of microfabricated force sensors for atomic microscopy, Appl. Phys. Lett. 60: 2741–2743 (1992).CrossRefGoogle Scholar
- 27.M. Hollandev and D.A. Wolfe, Nonparametric statisical methods, John Wiley and Sons, New York (1973).Google Scholar
- 28.P. Sprent, “Applied Nonparametric Statistical Methods,” Chapman and Hall, London (1989).Google Scholar
- 29.T.J. Terpstra, The asymptotic normality and consistency of Kendall’s test against trend, when ties are present in one ranking, Indag. Math. 14: 327–333 (1952).Google Scholar
- 30.A.R. Jonckheere, A distribution-free k-sample test against ordered alternatives, Biometrika 41: 133145 (1954).Google Scholar