Atomic Force Microscopy Study of Electron Beam Patterned SiO2

  • John F. Kimball
  • Patricia E. Allen
  • Dieter P. Griffis
  • Zbigniew J. Radzimski
  • Phillip E. Russell


An atomic force microscope (AFM) is used to study the patterns obtained from E-beam patterning of SiO2. The SiO2 is patterned using an E-beam, a plasma etcher and a chemical P-etch. Once patterned, the sample is studied with the AFM to determine the topography. Various patterns are made to determine the feasibility of this patterning technique in designing optical devices. Ideal patterning parameters are also explored.


Atomic Force Microscope Atomic Force Microscope Image Etch Rate Etching Selectivity Steam Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.W. Rubloff, Maskless selected area processing, J. Vac. Sci. Technol. B7: 1454–1461 (1989).CrossRefGoogle Scholar
  2. 2.
    M. Taneya, Y. Sugimoto, H. Hikeda, and K. Akita, Electron-Beam Induced C12 Etching of GaAs, Jpn. J. Appl. Phys. 28: L515 - L517 (1989).CrossRefGoogle Scholar
  3. 3.
    S.M. Sze, “Semiconductor Devices,” John Wiley & Sons, New York, 429 (1985).Google Scholar
  4. 4.
    T.W. O’Keeffe and R.M. Handy, Fabrication of Planar Silicon Transistors without Photoresist, Solid State Electron. 11, 261–266 (1989).CrossRefGoogle Scholar
  5. 5.
    D.R. Allee and A.N. Broers, Direct nanometer scale patterning of Si02 with electron beam irradiation through a sacrificial layer, Appl. Phys. Lett. 57: 2271–2273 (1990).CrossRefGoogle Scholar
  6. 6.
    P.E. Allen, D.P. Griffis, Z.J. Radzimski, and P.E. Russell, Electron beam patterning of SiO2, J. Vac. Sci. Technol. A 4: 965–969 (1992).CrossRefGoogle Scholar
  7. 7.
    P.D. Richard, R.J. Markunis, G. Lucovsky, G. G. Fountain, A.N. Mansour, and D.V. Tsu, Remote plasma enhanced CVD deposition, J. Vac. Sci. Technol. A 3: 867 (1985).CrossRefGoogle Scholar
  8. 8.
    D.C. Joy, “Principles of Analytical Electron Microscopy,” Plenum, New York, 353 (1986).Google Scholar
  9. 9.
    R.F. Reichelderfer, J.M. Welty, and J.F. Battey, J. Electrochem. Soc., 124: 1926 (1977).CrossRefGoogle Scholar
  10. 10.
    J.C. Russ, Z.J. Radzimski, A. Buczkowski, and L. Maynard, Monte Carlo Modeling of Electron Signals from Heterogeneous Specimens with Nonplanar Surfaces, J. Comput. Assist. Microsc. 2: 59–89 (1990).Google Scholar
  11. 11.
    W.A. Pliskin, and H.S. Lehman, J. Electrochem. Soc. 112: 1013 (1965).CrossRefGoogle Scholar
  12. 12.
    W. Kern and C.A. Deckert, “Thin Film Processes,” J. L. Vossen and W. Kern, eds. Academic Press, New York, 415 (1978).Google Scholar
  13. 13.
    S. Rojas A. Modelli, W.S. Wu, A. Borghesi, and B. Pivac, Properties of silicon dioxide films by low-pressure chemical vapor deposition from tetraethlorthosilicate, J. Vac. Sci. Technol. B 8: 1177–1184 (1990).CrossRefGoogle Scholar
  14. 14.
    C. Falcony. A. Ortiz, S. Lopez, J.C. Alonso, and S. Muhl, Low temperature SiO2 films, Thin Solid Films 193 /194: 638–647 (1990).CrossRefGoogle Scholar
  15. 15.
    J. Oroshnik and J. Kraitchman, Pyrolytic Deposition of Silicon Dioxide in an Evacuated System, J. Electrochem. Soc. 115: 649–652 (1968).CrossRefGoogle Scholar
  16. 16.
    G. Lucovsky, S.S. Kim, and J.T. Fitch, Formation of device quality Si/SiO2 interfaces at low substrate temperatures by remote plasma enhanced chemical vapor deposition of SiO2, J. Vac. Sci. Technol. B 8: 822–831 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • John F. Kimball
    • 1
  • Patricia E. Allen
    • 1
  • Dieter P. Griffis
    • 2
  • Zbigniew J. Radzimski
    • 2
  • Phillip E. Russell
    • 2
  1. 1.Physics & Astronomy DepartmentAppalachian State UniversityBooneUSA
  2. 2.Analytical Instrumentation FacilityNorth Carolina State UniversityRaleighUSA

Personalised recommendations