Skip to main content

Resolution and Limitations in Biological Applications of Atomic Force Microscopy

  • Chapter
  • 398 Accesses

Abstract

Atomic force microscopy (AFM) has been applied to image DNA and a membrane protein: cholera toxin. By use of the Kleinschmidt method, DNA molecules were picked up on carbon-coated mica surfaces and imaged by AFM in air and in organic solvents. The resolution was found to be closely related to the adhesion force and a resolution of 3–6 nm was routinely obtained when the adhesion force was below 3 nN. The role of the adhesion force, the tip condition and the specimen preparation on resolution and imaging quality will be discussed. Polymerized diacetylene phosphatidylcholine (DAPC) bilayers provide a relatively stable matrix for studying membrane proteins. When cholera toxin (complete or B-subunit oligomer) was bound to mixed bilayers of DAPC and the receptor glycolipid GM1, the subunit structure was well resolved by AFM in buffer, without crystallization. The resolution was better than 2 nm with excellent reproducibility for a probe force of 0.3–0.5 nN. These results show that individual biomacromolecules under native conditions can be imaged by AFM with high spatial resolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.R. Albrecht, S. Akamine, T.E. Carver, and C.F. Quate, Microfabrication of cantilever styli for the atomic force microscope, J. Vac. Sci. Technol. A8, 3386–3396 (1990).

    Article  CAS  Google Scholar 

  2. G. Binnig, C.F. Quate, and C.H. Gerber, Atomic Force Microscope, Phys. Rev. Lett. 56, 930–933 (1986).

    Article  Google Scholar 

  3. C. Bustamante, J. Vesenka, C.L. Tang, W. Rees, M. Guthod, and R. Keller, Circular DNA molecules imaged in air by scanning force microscopy, Biochemistry 31, 22–26 (1992).

    Article  CAS  Google Scholar 

  4. H.-J. Butt, K.H. Downing, and P.K. Hansma, Imaging the membrane protein bacteriorhodopsin with the atomic force microscope, Biophys. J. 58, 1473–1480 (1990).

    Article  CAS  Google Scholar 

  5. H.-J. Butt, E.K. Wolff, S.A.C. Gould, B.D. Northern, C.M. Peterson, and P.K. Hansma, Imaging cells with the atomic force microscope, J. Struct. Biol. 105, 54–61 (1990).

    Google Scholar 

  6. K.L. Dorrington, The theory of viscoelasticity in biomaterials, in: “The Mechanical Properties of Biological Materials,” Cambridge University Press, Cambridge (1979).

    Google Scholar 

  7. D.M. Gill, Mechanism of action of cholera toxin, Adv. Cyc. Nucleo. Res. 8, 85–118 (1977).

    CAS  Google Scholar 

  8. W. Haberle, J.K.H. Horber, and G. Binnig, Force microscopy of living cells, J. Vac. Sci. Techno. 9, 1210–1213 (1991).

    Article  Google Scholar 

  9. W. IIaberle, J.K.H. Horber, F. Ohnesorge, D.P.E. Smith, G. Binnig, In situ investigation of single living cells infected by viruses, Ultramicroscopy 42–44, 1161–1167 (1992).

    Google Scholar 

  10. H.G. Hansma, R.L. Sinsheimer, M.-Q. Li, and P.K. Hansma, Atomic force microscopy of single-and double-stranded DNA, Nucleic. Acids Res. 20, 3585–3590 (1992).

    Article  CAS  Google Scholar 

  11. H.G. Hansma, J. Vesenka, C. Siegerist, G. Kelderman, H. Morrett, P.L. Sinsheimer, V. Flings, C. Bustamante, P.K. Hansma, Reproducible imaging and dissection of plasmid DNA under liquid with atomic force microscopy, Science 256, 1180–1184 (1992).

    Article  CAS  Google Scholar 

  12. E. Henderson, Imaging and nanodissection of individual supercoiled plasmid by atomic force microscopy, Nucleic Acids Res. 20, 445–447 (1992).

    Article  CAS  Google Scholar 

  13. E. Ilenderson, P.G. Hayelon, and D.S. Sakaguchi, Actin filament dynamics in living glial cells imaged by atomic force microscopy, Science 257, 1944–1946 (1992).

    Article  Google Scholar 

  14. J.H. Hoh, R. I,al, S.A. John, J.-P. Revel, and M.F. Arnsdorf, Atomic force microscopy and dissection of gap junctions, Science 253, 1405–1408 (1991).

    Article  CAS  Google Scholar 

  15. J. Holmgren, Actions of cholera toxin and the prevention and treatment of cholera, Nature 292, 413417 (1981).

    Google Scholar 

  16. D. Johnston, S. Sanghera, M. Pons, and D. Chapman, Phospholipid polymers-sythesis and spectral characteristics, Biochim. Biophys. Acta 602, 57–69 (1980).

    Article  CAS  Google Scholar 

  17. Y.L. Lyubchenko, A.A. Gall, L.S. Shlyakhtenko, R.E. Harrington, and S.M. Lindsay, Atomic force microscopy imaging of large double stranded DNA molecules, Biophys. J. 61, A149 (1992).

    Google Scholar 

  18. Y.L. Lyubchenko, B. L. Jacobs, and S.M. Lindsay, Atomic force microscopy of reovirus dsRNA: a routine technique for length measurements, Nucleic Acids Res. 20, 3983–3986 (1992).

    Article  CAS  Google Scholar 

  19. Y.I,. Lyubchenko, P.I. Oden, D. Lampner, S.M. Lindsay and K.A. Dunker, Atomic force microscopy of DNA and bacteriophage in air, water and propanol: the role of adhesion forces, Nucl. Acids Res. in press.

    Google Scholar 

  20. G. Mosser, and A. Brisson, Structural analysis of two-dimensional arrays of cholera toxin B-subunit, J. Electron Micro. Tech. 18, 387–394 (1991).

    Article  CAS  Google Scholar 

  21. J. Mou, J. Yang, and Z. Shao, An optical detection low temperature atomic force microscope at ambient pressure for biological research, Rev. Sci. Instrum. in press.

    Google Scholar 

  22. M. Radmacher, R.W. Tillmann, M. Fritz, and H.F. Gaub, From molecules to cells: imaging soft samples with the atomic force microscope, Science 257, 1900–1905 (1992).

    Article  CAS  Google Scholar 

  23. R.A. Reed, J. Mattai, and G.G. Shipley, Interaction of cholera toxin with ganglioside GM, receptors in supported lipid monolayers, Biochemistry 26, 824–832 (1987).

    Article  CAS  Google Scholar 

  24. D.G. Rhodes, A. Xu, and R. Bittman, Structure of polymerizable lipid bilayers V: synthesis, bilayer structure and proterties of diacetylenic ether and ester lipids, Biochim. Biophys. Acta 1128, 93–104 (1992).

    Article  CAS  Google Scholar 

  25. H.O. Ribi, D.S. Ludwig, K.L. Mercer, G.K. Schoolnik, R.D. Kornberg, Three-dimensional structure of cholera toxin penetrating a lipid membrane, Science 239, 1272–1276 (1988).

    Google Scholar 

  26. D. Rugar, and P. Hansma, Atomic force microscopy, Physics Today 43, 23–30 (1990).

    Article  CAS  Google Scholar 

  27. D. Sarid, “Scanning Force Microscopy,” Oxford University Press, Oxford, New York (1990).

    Google Scholar 

  28. T. Tomie, H. Shimizu, T. Majima, M. Yamada, T. Kanayama, H. Kondo, M. Yano, and M. Ono, Three-dimensional readout of flash X-ray images of living sperm in water by atomic force microscopy, Science 252, 691–693 (1991).

    Article  CAS  Google Scholar 

  29. J. Vesenka, M. Guthold, C.L. Tang, D. Keller, E. Delaine, and C. Bustamante, Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope, Ultrmicroscopy 42–44, 1243–1249 (1992).

    Article  Google Scholar 

  30. H. Ximen, and P.E. Russell, Microfabrication of AFM tips using focused ion and electron beam techniques, Ultramicroscopy 42–44, 1526–1532 (1992).

    Article  Google Scholar 

  31. J. Yang and Z. Shao, The effect of probe force on the resolution of atomic force microscopy of DNA. Ultramicroscopy, in press.

    Google Scholar 

  32. J. Yang, A.V. Somlyo, M.K. Reedy, K. Takeyasu, L.K. Tamm, M. Allietta, T.W. Tillack, and Z. Shao, Biological applications of AFM, in: “Proc. 50th EMSA Annual Meeting,” Boston, MA., 1138–1139 (1992).

    Google Scholar 

  33. J. Yang, K. Takeyasu and Z. Shao, Atomic force microscopy of DNA molecules, FEES Lett. 301, 173–176 (1992).

    Article  CAS  Google Scholar 

  34. J. Yang, L.K. Tamm, T.W. Tillack, Z. Shao, New Approach for Atomic Force Microscopy of Membrane Proteins: the Imaging of Cholera Toxin, J. Mol. Biol. 229, 286–290 (1993).

    Article  CAS  Google Scholar 

  35. J.A.N. 7,asadzinski, C.A. IIelm, M.I,. Longo, A.L. Weisenhorn, S.A.C. Gould, and P.K. Hansma, Atomic force microscopy of hydrated phosphatidylethanolamine, Biophys. J. 59, 755–760 (1991).

    Article  Google Scholar 

  36. F. Zenhausern, M. Adriah, I3.T. Heggeler-Bordier, R. Emch, M. Jobin, M. Taborclli, P. Descouts, Imaging of DNA by scanning force microscopy, J. Struct. Biol. 108, 69–73 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yang, J., Tamm, L.K., Shao, Z. (1994). Resolution and Limitations in Biological Applications of Atomic Force Microscopy. In: Cohen, S.H., Bray, M.T., Lightbody, M.L. (eds) Atomic Force Microscopy/Scanning Tunneling Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9322-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9322-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9324-6

  • Online ISBN: 978-1-4757-9322-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics