Applications of a Combined Scanning Tunneling Microscope and Quartz Microbalance

  • Chris Daly
  • Jacqueline Krim

Abstract

It has recently become possible to carry out sliding friction measurements of adsorbed monolayers by means of a quartz crystal microbalance technique. These ongoing studies have revealed a range of applications that might result by combining the shaking action of the quartz microbalance with the imaging and patterning capabilities of a scanning tunneling microscope. We describe here how such an apparatus can be constructed and discuss a number of potential applications.

Keywords

Quartz Crystal Microbalance Graphite Surface Adsorbed Film Surface Force Apparatus Quartz Microbalance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.B. Pethica, Comment on “Interatomic Forces in Scanning Tunneling microscopy: Giant Corrugations of the Graphite Surface,” Phys. Rev. Lett. 57: 3235–3239 (1986).CrossRefGoogle Scholar
  2. 2.
    C.M. Mate, G. McClelland, R. Erlandsson, S. Chiang, Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59: 1942–1945 (1987).CrossRefGoogle Scholar
  3. 3.
    R. Erlandsson, G. Hadziioannou, C.M. Mate, G. McClelland, S. Chiang, Atomic-scale friction between the muscovite mica cleavage plane and a tungsten tip, J. Chem. Phys. 89: 5190–5193 (1988).CrossRefGoogle Scholar
  4. 4.
    N.A. Burnham, D.D. Dominguez, R.L. Mowery, R.J. Colton, Probing the surface forces of monolayer films with an atomic force microscope, Phys. Rev. Lett. 64: 1931–1934 (1990).CrossRefGoogle Scholar
  5. 5.
    U. Landman, W.D. Luedtke, N.A. Burnham, R.J. Colton, Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture, Science 248: 454–461 (1990).Google Scholar
  6. 6.
    N.A. Burnham, R.J. Colton, Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope. J. Vac. Sci. Technol. A7: 2906–2913 (1990).Google Scholar
  7. 7.
    J.N. Israelachvili, P.M. McGuiggan, A.M. Homola, Dynamic properties of molecularly thin films. Science. 240: 189–191 (1988).Google Scholar
  8. 8.
    J. Van Alsten, S. Granick, Molecular tribometry of ultrathin liquid films, Phys. Rev. Lett. 61: 570–2573 (1988.).Google Scholar
  9. 9.
    M. Hirano, K. Shinjo, R. Kaneko, Y. Murata, Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 67: 2642–2645 (1991)CrossRefGoogle Scholar
  10. 10.
    J. Krim. R. Chiarello, D.H Solnina, X-ray reflectivity and adsorption isotherm study of fractal scaling in vapor-deposited films, Phys. Rev. Lett. 66: 181–186 (1991).CrossRefGoogle Scholar
  11. 11.
    E.T. Watts, J. Krim, A. Widom, Experimental observation of interfacial slippage at the boundary of molecularly thin films with gold substrates, Phys. Rev. 41: 3466–3472 (1990).CrossRefGoogle Scholar
  12. 12.
    J. Krim, A. Widom, Damping of a crystal oscillator by an adsorbed monolayer, Phys. Rev. B 38: 12184–12191 (1988).Google Scholar
  13. 13.
    J. Krim, R. Chiarello, Sliding friction measurements of molecularly thin films, J. Vac. Sci. Technol. A9: 2566–2570 (1991).Google Scholar
  14. 14.
    B.N.J. Persson, D. Schumacher, D. Otto, Surface resistivity and vibrational damping in adsorbed layers, Chem. Phys. Lett. 178: 204–212 (1991)CrossRefGoogle Scholar
  15. 15.
    J.B. Sokoloff, Theory of energy dissipation in sliding crystal surfaces, Phys. Rev. B 42: 760–765 (1990).Google Scholar
  16. 16.
    W. Zhong, D. Tomanek, First-principles theory of atomic scale friction. Phys. Rev. Lett. 64: 3054–3057 (1990).CrossRefGoogle Scholar
  17. 17.
    U. Landman, W.D Luetke, M.W. Ribarsky, Structural and dynamical Consequences of Interactions in Interfacial Systems, J. Vac. Sci. Technol. A7: 2928 (1990).Google Scholar
  18. 18.
    U. Landman, W.D. Luedtke, E.M. Ringer, Atomistic mechanisms of adhesive contact formation and interfacial proceses, Wear, 150–165 (1991).Google Scholar
  19. 19.
    P.A. Thompson, M.O. Robbins, Simulations of contact-line motion: slip and the dynamic contact angle, Phys. Rev. Lett. 63:766–769 (1989); Shear flow near solids: epitaxial order and flow boundary conditions, Phys. Rev. A 41: 6830–6837 (1990).Google Scholar
  20. 20.
    D. Fargues, P. Dolle, M. Alnot, J.J. Ehrhardt, Adsorption of xenon on Ni(111) studied by photoemission and LEED, Surf. Sci. 214: 187–196 (1989).CrossRefGoogle Scholar
  21. 21.
    J. Krim, J. Suzanne, J.G. Dash, Triple point wetting of molecularly thin films, Phys. Rev. Lett. 52: 640–644 (1984).CrossRefGoogle Scholar
  22. 22.
    L.W. Bruch, J.M. Gay, J. Krim On the limit of compression of a physisorbed monolayer, Jour. de Phys. (Paris) 46: 425–433 (1984).Google Scholar
  23. 23.
    M.E. Frerking, “Crystal Oscillator Design and Temperature Compensation,” Van Nostrand Reinhold, New York, 88 (1978).Google Scholar
  24. 24.
    J. Dayo, C. Daly, and J. Krim, private communication.Google Scholar
  25. 25.
    J. Krim, and I. Heyvaert, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Chris Daly
    • 1
  • Jacqueline Krim
    • 1
  1. 1.Physics DepartmentNortheastern UniversityBostonUSA

Personalised recommendations