Skip to main content

Fracture Surface Topography of TNT Using Atomic Force Microscopy

  • Chapter
  • 389 Accesses

Abstract

Height profiles spaced 0.008 μm apart across the fracture surface of TNT were obtained with an atomic force microscope (AFM). Spatial power spectra (wavelengths of 0.016 μm to 4.2 μm) were calculated using a prolate spheroidal data window in the horizontal space domain prior to using a fast Fourier transform algorithm.1 Preliminary findings based on the first 13 profiles across the surface are as follows. The power spectral density of the individual fracture surface profiles is found to decrease with increasing spatial frequency over the region examined, ≈ 1.0 μm−1 to ≈ 10.0 μm−1. Power spectral slopes ≤ −3 indicate deterministic fracture. Harmonic distribution of peaks in the power spectra defines the cluster size across the full scan. The variation of the power amplitudes at given frequencies across the profile set defines the cluster size across the 13 profiles. A typical TNT cluster size is found to be approximately 106 TNT molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.Y.D. Lanzerotti, J. Sharma, Brittle behavior of explosives during high acceleration, App. Phys. Lett. 39: 455–457 (1981).

    Article  CAS  Google Scholar 

  2. M.Y.D. Lanzerotti, J. Pinto, A. Wolfe, Broad bandwidth study of the topography of the fracture surfaces of explosives, “Ninth Symposium (International) on Detonation,” Vol., 1: 355–361 (1989).

    Google Scholar 

  3. M.Y.D. Lanzerotti, J. Pinto, A. Wolfe, Fracture surface topography of TNT, Composition B, and Octol,“Tenth Symposium (International) on Detonation,” in press.

    Google Scholar 

  4. Digital Instruments Inc., Private communication (1993).

    Google Scholar 

  5. A.G.M. Hunter, E.A. Smith, Measurement of surface roughness, Wear, 59: 383–386 (1980).

    Article  Google Scholar 

  6. E.L. Church, P.X. Takacs, Effects of the nonvanishing tip size in mechanical profile measurements, Proc SPIE (SPIE—International Society for Optical Engineering, Bellingham, WA), 1332:504–515 (1990).

    Google Scholar 

  7. J.E. Griffith, D.A. Grigg, Dimensional metrology with scanning probe microscopes, Phys. Rev. B, in press.

    Google Scholar 

  8. D.J. Thomson, Spectrum estimation and harmonic analysis, Proc. IEEE. 70: 1055–1096 (1982).

    Article  Google Scholar 

  9. D.J. Thomson, Quadratic-inverse spectrum estimates: Applications to paleoclimatology, Philos. Trans. R. Soc. London, A 332: 539–597 (1990).

    Article  Google Scholar 

  10. D.J. Thomson, M.F. Robbins, C.G. Maclennan, L.J. Lanzerotti, Spectral and windowing techniques in power spectral analyses of geomagnetic data, Physics of the Earth and Planetary Interiors 12: 217–231 (1976).

    Article  Google Scholar 

  11. S.R. Brown and C.H. Scholz, Broad bandwidth study of the topography of natural rock surfaces, J. Geophys. Rev. 90:12, 575–12, 582 (1985).

    Google Scholar 

  12. S.E. Hough, On the use of spectral methods for the determination of fractal dimension, Geophys. Res. Lett. 16: 673–676 (1989).

    Article  Google Scholar 

  13. C. Choi, Private communication (1993).

    Google Scholar 

  14. H.G. Gallagher and J.N. Sherwood, The growth and perfection of single crystals of trinitrotoluene (TNT), in:“Structure and Properties of Energetic Materials,” R.W. Armstrong, J.J. Gilman, and D.H. Liebenberg. eds., Materials Research Society Volume 296, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lanzerotti, M.Y.D., Rinzler, A.G., Pinto, J.J., Thomson, D.J., Wolfe, A. (1994). Fracture Surface Topography of TNT Using Atomic Force Microscopy. In: Cohen, S.H., Bray, M.T., Lightbody, M.L. (eds) Atomic Force Microscopy/Scanning Tunneling Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9322-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9322-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9324-6

  • Online ISBN: 978-1-4757-9322-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics