Fracture Surface Topography of TNT Using Atomic Force Microscopy

  • M. Yvonne D. Lanzerotti
  • A. G. Rinzler
  • James J. Pinto
  • D. J. Thomson
  • A. Wolfe


Height profiles spaced 0.008 μm apart across the fracture surface of TNT were obtained with an atomic force microscope (AFM). Spatial power spectra (wavelengths of 0.016 μm to 4.2 μm) were calculated using a prolate spheroidal data window in the horizontal space domain prior to using a fast Fourier transform algorithm.1 Preliminary findings based on the first 13 profiles across the surface are as follows. The power spectral density of the individual fracture surface profiles is found to decrease with increasing spatial frequency over the region examined, ≈ 1.0 μm−1 to ≈ 10.0 μm−1. Power spectral slopes ≤ −3 indicate deterministic fracture. Harmonic distribution of peaks in the power spectra defines the cluster size across the full scan. The variation of the power amplitudes at given frequencies across the profile set defines the cluster size across the 13 profiles. A typical TNT cluster size is found to be approximately 106 TNT molecules.


Atomic Force Microscope Fracture Surface Spatial Frequency Power Spectral Density 4New York City 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.Y.D. Lanzerotti, J. Sharma, Brittle behavior of explosives during high acceleration, App. Phys. Lett. 39: 455–457 (1981).CrossRefGoogle Scholar
  2. 2.
    M.Y.D. Lanzerotti, J. Pinto, A. Wolfe, Broad bandwidth study of the topography of the fracture surfaces of explosives, “Ninth Symposium (International) on Detonation,” Vol., 1: 355–361 (1989).Google Scholar
  3. 3.
    M.Y.D. Lanzerotti, J. Pinto, A. Wolfe, Fracture surface topography of TNT, Composition B, and Octol,“Tenth Symposium (International) on Detonation,” in press.Google Scholar
  4. 4.
    Digital Instruments Inc., Private communication (1993).Google Scholar
  5. 5.
    A.G.M. Hunter, E.A. Smith, Measurement of surface roughness, Wear, 59: 383–386 (1980).CrossRefGoogle Scholar
  6. E.L. Church, P.X. Takacs, Effects of the nonvanishing tip size in mechanical profile measurements, Proc SPIE (SPIE—International Society for Optical Engineering, Bellingham, WA), 1332:504–515 (1990).Google Scholar
  7. 7.
    J.E. Griffith, D.A. Grigg, Dimensional metrology with scanning probe microscopes, Phys. Rev. B, in press.Google Scholar
  8. 8.
    D.J. Thomson, Spectrum estimation and harmonic analysis, Proc. IEEE. 70: 1055–1096 (1982).CrossRefGoogle Scholar
  9. 9.
    D.J. Thomson, Quadratic-inverse spectrum estimates: Applications to paleoclimatology, Philos. Trans. R. Soc. London, A 332: 539–597 (1990).CrossRefGoogle Scholar
  10. 10.
    D.J. Thomson, M.F. Robbins, C.G. Maclennan, L.J. Lanzerotti, Spectral and windowing techniques in power spectral analyses of geomagnetic data, Physics of the Earth and Planetary Interiors 12: 217–231 (1976).CrossRefGoogle Scholar
  11. 11.
    S.R. Brown and C.H. Scholz, Broad bandwidth study of the topography of natural rock surfaces, J. Geophys. Rev. 90:12, 575–12, 582 (1985).Google Scholar
  12. 12.
    S.E. Hough, On the use of spectral methods for the determination of fractal dimension, Geophys. Res. Lett. 16: 673–676 (1989).CrossRefGoogle Scholar
  13. 13.
    C. Choi, Private communication (1993).Google Scholar
  14. 14.
    H.G. Gallagher and J.N. Sherwood, The growth and perfection of single crystals of trinitrotoluene (TNT), in:“Structure and Properties of Energetic Materials,” R.W. Armstrong, J.J. Gilman, and D.H. Liebenberg. eds., Materials Research Society Volume 296, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • M. Yvonne D. Lanzerotti
    • 1
  • A. G. Rinzler
    • 1
  • James J. Pinto
    • 1
  • D. J. Thomson
    • 2
  • A. Wolfe
    • 3
  1. 1.Development and Engineering CenterU. S. Army Armament ResearchPicatinny ArsenalUSA
  2. 2.AT&T Bell LaboratoriesMurray HillUSA
  3. 3.New York City Technical CollegeBrooklynUSA

Personalised recommendations