Scanning Tunneling Microscopy Studies of Alcohol/Alkane Mixtures Adsorbed on Graphite Surfaces

  • Bhawani Venkataraman
  • John J. Breen
  • George W. Flynn


Mixtures of triacontanol/triacontane adsorbed on graphite surfaces have been investigated using STM in order to understand the relative importance of functional groups in determining the adsorbate/surface sticking probability. The images observed for these mixtures indicate that the alcohol and alkanes form separate regions on the surface and that the sticking probability is dependent on the liquid phase environment above the graphite surface. The mixtures exhibit interesting reorganization dynamics during which the alcohols and alkanes separate out on the surface.


Scan Tunneling Microscopy Graphite Surface Alcohol Molecule Packing Arrangement Sticking Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.H. Findenegg, Ordered layers of aliphatic alcohols and carboxylic acids at the pure liquid/graphite surface, J. Chem. Soc. Faraday Trans. 69: 1069–1078 (1973).CrossRefGoogle Scholar
  2. 2.
    G.H. Findenegg, Order-disorder transitions at the liquid/solid interface, J. Chem. Soc. Faraday Trans. 68: 1799–1806 (1972).CrossRefGoogle Scholar
  3. 3.
    A.J. Groszek, Selective adsorption at graphite/hydrocarbon interface, Proc. Roy. Soc. Lond. A 314: 473–498 (1970).CrossRefGoogle Scholar
  4. 4.
    G.C. McGonigal, R.H. Bernhardt, D.J. Thomson, Imaging alkane layers at the liquid/graphite interface with the scanning tunneling microscope, Appl. Phys. Len. 57: 28–30 (1990).CrossRefGoogle Scholar
  5. 5.
    G.C. McGonigal, R.H. Bernhardt, Y.H.Yeo, D.J. Thomson, Observation of highly ordered, two-dimensional n-alkane and n-alkanol structures on graphite, J. Vac. Sci. Technol. B9: 1107–1109 (1991).CrossRefGoogle Scholar
  6. 6.
    J.P. Rabe, S. Buchholz, Commensurability and mobility in two dimensional molecular patterns on graphite, Science, 253: 424–426 (1991).CrossRefGoogle Scholar
  7. 7.
    S. Buchholz, J.P. Rabe, Molecular imaging of alkanol monolayers on graphite, Angew. Chem. Int. Ed. Engl. 31: 189–191 (1992).CrossRefGoogle Scholar
  8. 8.
    G. Watel, F. Thibaudau, J. Cousty, Direct observation of long chain alkane bilayer films on graphite by scanning tunneling microscopy, Surf Sci. Lett. 281: L297 - L302 (1993).CrossRefGoogle Scholar
  9. 9.
    F. Thibaudau, G. Watel, J. Cousty, Scanning tunneling microscopy imaging of alkane bilayers adsorbed on graphite: mechanism of contrast, Surf Sci. Lett. 281: L303 - L307 (1993).CrossRefGoogle Scholar
  10. 10.
    Y.H. Yeo, K. Yachoboski, G.C. McGonigal, D.J. Thomson, Intramolecular imaging of physisorbed molecules with the scanning tunneling microscope at the liquid/graphite interface, J. Vac. Sci. Technol. A10: 600–602 (1992).CrossRefGoogle Scholar
  11. 11.
    R. I lentschke, B.I,. Schurmann, J.P. Rabe, Molecular dynamics simulations of ordered alkanc chains physisorbed on graphite, J. Chem. Phys. 96: 6213–6221 (1992).CrossRefGoogle Scholar
  12. 12.
    S. Buchholz, J.P. Rabe, Conformation, packing, defects and molecular dynamics in monolayers of dialkyl-substituted benzenes, J. Vac. Sci. Technol. B9: 1126–1128 (1991).CrossRefGoogle Scholar
  13. 13.
    J.P. Rabe, S. Buchholz. Direct observation of molecular structure and dynamics at the interface between a solid wall and an organic solution by scanning tunneling microscope, Phys. Rev. Lett. 66: 2076–2099 (1991).CrossRefGoogle Scholar
  14. 14.
    D.P.E. Smith, W.M. Heckl, H.A. Klagges, Ordering of alkylcyanobiphenyl molecules at N0SZ and graphite surfaces studied by tunneling microscopy, Surf. Sci. 278: 166–174 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Bhawani Venkataraman
    • 1
  • John J. Breen
    • 1
  • George W. Flynn
    • 1
  1. 1.Department of Chemistry and Columbia Radiation LaboratoryColumbia UniversityNew YorkUSA

Personalised recommendations