Electron-Ion Recombination Processes in Plasmas

  • Yukap Hahn


As an initially disturbed plasma proceeds toward steady state, recombination processes, together with collisional excitation and ionization, play an important role in determining the relaxation time and final-state ionization balance of the plasma. Recombination of free electrons1 with ions results in the emission of radiation that carries information about the radiating system. This recombination radiation and radiative decay X rays of excited states provide important tools with which the structure of the radiating system and its environment can be examined. Modeling and diagnostics of laboratory and astrophysical plasmas have relied heavily on the information carried by these radiations.


Dielectronic Recombination Cascade Transition Continuum Electron Collisional Excitation Isoelectronic Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. G. Graham, W. Frisch, Y. Hahn, and J. Tanis (eds.), Recombination of Atomic Ions, NATO ASI Series B: Physics, No. 296 Plenum (1992).Google Scholar
  2. 2.
    H. A. Kramers, Phil. Mag. 46, 836 (1923).Google Scholar
  3. 3.
    H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and Two Electron Atoms, Springer-Verlag, Berlin (1957).zbMATHCrossRefGoogle Scholar
  4. 4.
    D. R. Bates and H. S. W. Massey, Phil. Trans. R. Soc. A239, 269 (1943).ADSCrossRefGoogle Scholar
  5. 5.
    A. Burgess, Astrophys. J. 139, 776 (1964).ADSCrossRefGoogle Scholar
  6. 6.
    A. Burgess, Astrophys. J. 141, 1588 (1965).ADSCrossRefGoogle Scholar
  7. 7.
    D. S. Belic, G. H. Dunn, T. J. Morgan, D. W. Muller, and C. Timmer, Phys. Rev. Lett. 50, 339 (1983);ADSCrossRefGoogle Scholar
  8. 7a.
    A. Muller, D. S. Belic, B. D. DePaola, N. Djuric, G. H. Dunn, D. W. Muller, and C. Timmer, Phys. Rev. Lett. 56, 127 (1986).ADSCrossRefGoogle Scholar
  9. 8.
    B. A. Mitchell, C. T. Ng, J. L. Forand, D. P. Levac, R. E. Mitchell, A. Sen, D. B. Miko, and J. W. McGowan, Phys. Rev. Lett. 50, 335 (1983).ADSCrossRefGoogle Scholar
  10. 9.
    P. F. Dittner, S. Datz, P. D. Miller, C. D. Moak, P. H. Stelson, C. Bottcher, W. B. Dress, G. D. Alton, and N. Neskovic, Phys. Rev. Lett. 51, 31 (1983).ADSCrossRefGoogle Scholar
  11. 10.
    A. R. Young, L. D. Gardner, D. W. Savin, G. P. Lafyatis, A. Chutjian, S. Bliman, and J. L. Kohl, Phys. Rev. A 49, 357 (1994).ADSCrossRefGoogle Scholar
  12. 11.
    J. A. Tanis, Nucl. Instrum. Methods, Sect. A 262, 52 (1987).ADSCrossRefGoogle Scholar
  13. 12.
    V. L. Jacobs, J. Davis, and P. C. Kepple, Phys. Rev Lett. 37, 1390 (1976).ADSCrossRefGoogle Scholar
  14. 13.
    K. LaGattuta and Y. Hahn, Phys. Rev. Lett. 51, 558 (1983).ADSCrossRefGoogle Scholar
  15. 14.
    K. LaGattuta, I. Nasser, and Y Hahn, J. Phys. B 20, 1565, 1577 (1987).ADSCrossRefGoogle Scholar
  16. 15.
    Y Hahn, Physica Scripta, submitted.Google Scholar
  17. 16.
    T. Aberg and J. Utriainen, Phys. Rev. Lett. 22, 1346 (1969).ADSCrossRefGoogle Scholar
  18. 17.
    T. Aberg, K. Reinikainen, and O. Keski-Rahkonen, Phys. Rev. A 23, 153 (1981).ADSCrossRefGoogle Scholar
  19. 18.
    E. M. Bernstein, M. W. Clark, C. S. Oglesby, J. A. Tanis, W. G. Graham, R. H. McFarland, T. J. Morgan, B. M. Johnson, and K. W. Jones, Phys. Rev. A 41, 2594 (1990).ADSCrossRefGoogle Scholar
  20. 19.
    Y. Hahn, Phys. Rev. A 40, 950 (1989).Google Scholar
  21. 20.
    See, for example, T. D. Mark and G. H. Dunn (eds.), Electron Impact Ionization, Springer-Verlag, Vienna (1985).Google Scholar
  22. 21.
    D. H. Crandall, in Physics of Ion-Ion and Electron-Ion Collisions (F. Brouilland and J. W. McGowan, eds.), Plenum, New York (1983), p. 201.CrossRefGoogle Scholar
  23. 22.
    Y Hahn, Phys. Rev. Lett. 39, 82 (1977).ADSCrossRefGoogle Scholar
  24. 23.
    Y Hahn and K. LaGattuta, Phys. Reports 166, 195 (1988).ADSCrossRefGoogle Scholar
  25. 24.
    Y Hahn, Comments Atom. Molec. Phys. 19, 99 (1987).Google Scholar
  26. 25.
    B. W. Shore, Astrophys. J. 158, 1205 (1969).ADSCrossRefGoogle Scholar
  27. 26.
    Y Hahn, in Advances in Atomic and Molecular Physics, Vol. 21 (D. R. Bates and B. Bederson, eds.), Academic Press, New York, p. 123 (1985).CrossRefGoogle Scholar
  28. 27.
    Y Hahn and P. Krstic, Physica Scripta, 48, 340 (1993).ADSCrossRefGoogle Scholar
  29. 28.
    Y Hahn, (unpublished).Google Scholar
  30. 29.
    Y. Hahn, P. Krstic and J. Li, in 9th Int. Conf. on Atomic Processes in Plasmas (W. L. Rowan, ed.), AIP, New York, p. 69–83 (1995).Google Scholar
  31. 30.
    M. Baranger, Phys. Rev. 111, 481 (1958).MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 31.
    A. C. Kolb and H. Griem, Phys. Rev. 111, 514 (1958).ADSzbMATHCrossRefGoogle Scholar
  33. 32.
    H. Griem, Spectral Line Broadening by Plasmas, Academic Press, New York (1974).Google Scholar
  34. 33.
    Y Hahn, Phys. Rev. A 46, 4433 (1992).ADSCrossRefGoogle Scholar
  35. 34.
    J. Li and Y Hahn, Phys. Rev E 49, 927 (1994).ADSCrossRefGoogle Scholar
  36. 35.
    Y Hahn and D. W. Rule, J. Phys. B 10, 2689 (1977).ADSCrossRefGoogle Scholar
  37. 36.
    D. J. McLaughlin and Y Hahn, Phys. Rev A 43, 1313 (1991) and Errata.ADSCrossRefGoogle Scholar
  38. 37.
    A. Abdel-Hady, I. Nasser, and Y. Hahn, J. Quant. Spectrosc. Radiai. Transfer 39, 197 (1988).ADSCrossRefGoogle Scholar
  39. 38.
    L. Andersen, Electron-Ion Recombination at Low Energies, Aarhus, 1993. XVIIII CPEAC.Google Scholar
  40. 39.
    P. Krstic and Y. Hahn, Phys. Lett. A, 192, 47 (1994).ADSCrossRefGoogle Scholar
  41. 40.
    Y Hahn, J. Quant. Spectrosc. Radiat. Transfer 41, 315 (1989).ADSCrossRefGoogle Scholar
  42. 41.
    A. H. Moussa and Y. Hahn, J. Quant. Spectrosc. Radiat. Transfer 43, 45 (1990).ADSCrossRefGoogle Scholar
  43. 42.
    Y Hahn, J. Quant. Spectrosc. Radiat. Transfer 49, 81 (1993) andADSCrossRefGoogle Scholar
  44. 42a.
    Errata; JQSRT 51, 663 (1994).ADSGoogle Scholar
  45. 43.
    G. Peach, Adv. Phys. 30, 367 (1981).ADSCrossRefGoogle Scholar
  46. 44.
    D. R. Bates, A. E. Kingston, and R. W. P. McWhirter, Proc. R. Soc. London, Ser. A 267, 297 (1962).ADSCrossRefGoogle Scholar
  47. 45.
    J. Li and Y Hahn, Phys. Rev. E 48, 2934 (1993).ADSCrossRefGoogle Scholar
  48. 46.
    P. Krstic and Y Hahn, Phys. Rev. A 48, 4515 (1993).ADSCrossRefGoogle Scholar
  49. 47.
    Y Hahn and P. Krstic, J. Phys. B 26, L291 (1993).CrossRefGoogle Scholar
  50. 48.
    D. B. Riesenfeld, Astrophys. J. 398, 386 (1992).ADSCrossRefGoogle Scholar
  51. 49.
    D. B. Riesenfeld, J. R. Raymond, A. R. Young, and J. L. Kohl, Astrophys. J. 389, L37 (1992).ADSCrossRefGoogle Scholar
  52. 50.
    C. F. Hooper, Phys. Rev. 149, 77 (1966).ADSCrossRefGoogle Scholar
  53. 51.
    C. F. Hooper, Phys. Rev. 165, 215 (1968).ADSCrossRefGoogle Scholar
  54. 52.
    S. Ichimaru (ed.), Strongly Coupled Plasma Physics, North-Holland, Amsterdam (1990).Google Scholar
  55. 53.
    F. J. Rogers and H. E. Dewitt (eds.), Strongly Coupled Plasma Physics, NATO ASI Series B, No. 154, Plenum, New York (1986).Google Scholar
  56. 54.
    J. Li and Y Hahn, Phys. Rev. E, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Yukap Hahn
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of ConnecticutStorrsUSA
  2. 2.CTRStorrsUSA

Personalised recommendations