Skip to main content

Spectroscopic Processes and Data for Fusion Edge Plasmas

  • Chapter
  • 324 Accesses

Abstract

In this review of atomic structure data, all atomic species relevant to current and future fusion research facilities as compiled by Janev et al. 1,2 are included. His lists contain the following chemical elements, in order of increasing atomic number: H, D, He, Li, Be, B, C, O, Mg, Al, Si, Ti, V, Cr, Fe, Ni, Cu, Ga, Kr, Nb, Mo, Xe, Ta, and W. Data for the spectra of neutral atoms and ions up to about the 10th stage of ionization will be covered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Janev, in: Atomic and Plasma-Material Interaction Processes in Controlled Thermonuclear Fusion (R. K. Janev and H. W. Drawin, eds.), Elsevier, Amsterdam (1993), p. 27.

    Google Scholar 

  2. R. K. Janev, in: Review of Fundamental Processes and Applications of Atoms and Ions (C. D. Lin, ed.), World Scientific, Singapore (1993), p. 1.

    Chapter  Google Scholar 

  3. H. W. Drawin, in: Atomic and Plasma-Material Interaction Processes in Controlled Thermonuclear Fusion (R. K. Janev and H. W. Drawin, eds.), Elsevier, Amsterdam (1993), p. 45.

    Google Scholar 

  4. H. R. Griem, Plasma Spectroscopy, McGraw-Hill, New York (1964).

    Google Scholar 

  5. W. L. Wiese, in: Methods of Experimental Physics, Vol. 7B (W. Fite and B. Bederson, eds.), Academic Press, New York (1960), p. 307.

    Google Scholar 

  6. P. H. Heckmann and E. Traebert, Introduction to the Spectroscopy of Atoms, North-Holland, Amsterdam (1989).

    Google Scholar 

  7. J. E. Sansonetti, J. Reader, C. J. Sansonetti, and N. Acquista, J. Res. Natl. Inst. Stand. Technol. 97, 1 (1992).

    Article  Google Scholar 

  8. V. Kaufman and B. Edlén, J. Phys. Chem. Ref. Data 3, 825 (1974).

    Article  ADS  Google Scholar 

  9. M. J. Seaton, J. Phys. B 20, 6363 (1987).

    Article  ADS  Google Scholar 

  10. C. Mendoza, in Atomic and Molecular Data for Space Astronomy (P. L. Smith- and W. L. Wiese, eds.), Lecture Notes in Physics, Vol. 407 Springer-Verlag, Berlin (1992), p. 85.

    Chapter  Google Scholar 

  11. In a series of papers with the subtitle “Atomic Data for Opacity Calculations (ADOC),” partial results have been published by members of the OP team in J. Phys. B. The most recent paper is ADOC XXI, by A. Hibbert and M. P. Scott, J. Phys. B 27, 1315 (1994).

    Article  ADS  Google Scholar 

  12. K. A. Berrington, P. G. Burke, K. Butler, J. J. Seaton, P. J. Storey, K. T. Taylor, and Yu Yan, J. Phys. B. 20, 6379 (1987).

    Article  ADS  Google Scholar 

  13. Opacity Project Team, The Opacity Project, Vol. 1, Institute of Physics Publishers, Bristol, U.K. (1994).

    Google Scholar 

  14. W. L. Wiese, J. R. Fuhr, and T. M. Deters, J. Phys. Chem. Ref. Data, Monograph Series 7 (1995).

    Google Scholar 

  15. A. Hibbert, Comput. Phys. Commun. 9, 141 (1975).

    Article  ADS  Google Scholar 

  16. A. Hibbert, E. Biemont, M. Godefroid, and N. Vaeck, Astron. Astrophys. Suppl. Ser. 99, 179 (1993).

    ADS  Google Scholar 

  17. A. Hibbert, E. Biemont, M. Godefroid, and N. Vaeck, Astron. Astrophys. Suppl. Ser. 88, 505 (1991).

    ADS  Google Scholar 

  18. A. Hibbert, E. Biemont, M. Godefroid, and N. Vaeck, J. Phys. B 24, 3943 (1991).

    Article  ADS  Google Scholar 

  19. K. L. Bell, C. A. Ramsbottom, and A. Hibbert, J. Phys. B 25, 1735 (1992).

    Article  ADS  Google Scholar 

  20. K. L. Bell, A. Hibbert, R. P. Stafford, and B. M. McLaughlin, Phys. Ser. 50, 343 (1994).

    Article  ADS  Google Scholar 

  21. C.F. Fischer, The Hartree-Fock Method for Atoms, John Wiley & Sons, New York (1977).

    Google Scholar 

  22. C. Froese Fischer and H. P. Sana, Phys. Ser. 32, 181 (1985).

    Article  ADS  Google Scholar 

  23. W. Eissner, M. Jones, and H. Nussbaumer, Comput. Phys. Commun. 8, 270 (1974).

    Article  ADS  Google Scholar 

  24. E. Biemont and C. J. Zeippen, Astron. Astrophys. 265, 850 (1992).

    ADS  Google Scholar 

  25. A. W. Weiss, Phys. Rev. A 51, 1067 (1995).

    Article  ADS  Google Scholar 

  26. J. E. Lawler, in Lasers, Spectroscopy, and New Ideas: A Tribute to Arthur L. Schawlow (W. M. Yen and M. D. Levenson, eds.), Springer-Verlag, New York (1988).

    Google Scholar 

  27. C. Goldbach, M. Martin, and G. Nollez, Astron. Astrophys. 221, 155 (1989).

    ADS  Google Scholar 

  28. Q. Zhu, J. M. Bridges, T. Hahn, and W. L. Wiese, Phys. Rev. A 40, 3721 (1989);

    Article  ADS  Google Scholar 

  29. J. Musielok, W L. Wiese, and G. Veres, Phys. Rev. A 51, 3588 (1995).

    Article  ADS  Google Scholar 

  30. S. Glenzer, H. J. Kunze, J. Musielok, Y.-K. Kim, and W L. Wiese, Phys. Rev. A 49, 221 (1994).

    Article  ADS  Google Scholar 

  31. E. A. Den Hartog, D. W. Duquette, and J. E. Lawler, J. Opt. Soc. Am. B 4, 48 (1987).

    Article  ADS  Google Scholar 

  32. T. R. O’Brian, M. E. Wickliffe, J. E. Lawler, W Whaling, and J. W. Brault, J. Opt. Soc. Am. B 8, 1185 (1991).

    Article  ADS  Google Scholar 

  33. W. N. Lennard, W. Whaling, J. M. Scalo, and L. Testerman, Astrophys. J. 197, 517 (1975).

    Article  ADS  Google Scholar 

  34. D. W. Duquette, E. A. Den Hartog, and J. E. Lawler, J. Quant. Spectrosc. Radiat. Transfer 35, 281 (1986).

    Article  ADS  Google Scholar 

  35. W. Whaling and J. W. Brault, Phys. Scr. 38, 707 (1988).

    Article  ADS  Google Scholar 

  36. P. Hannaford and R. M. Lowe, Opt. Eng. 22, 532 (1983).

    Article  Google Scholar 

  37. W. Schade, L. Wolejko, and V. Helbig, Phys. Rev. A 47, 2099 (1993).

    Article  ADS  Google Scholar 

  38. A. Musgrove and R. Zalubas, Natl. Bur. Stand. (U.S.) Special Publ. 363, Supplement 3 (1985) and earlier editions, cited therein.

    Google Scholar 

  39. J. R. Fuhr, B. J. Miller, and G. A. Martin, Natl. Bur. Stand. (U.S.) Special Publ. 505, (1978) and Supplement 1 (1980).

    Google Scholar 

  40. International Bulletin on Atomic and Molecular Data for Fusion, International Atomic Energy Agency, Vienna, Nos. 1–48 (1977–1994).

    Google Scholar 

  41. J. Reader, C. H. Corliss, W. L. Wiese, and G. A. Martin, Wavelengths and Transition Probabilities for Atoms and Atomic Ions, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. (U.S.) 68, U.S. Government Printing Office, Washington, D.C. (1980).

    Google Scholar 

  42. J. Reader and C. H. Corliss, in CRC Handbook of Chemistry and Physics, 73rd and following editions (D. R. Lide, ed.), CRC Press, Boca Raton, Florida (1992, 1993, 1994).

    Google Scholar 

  43. A. N. Zaidel’, V. K. Prokof’ev, S. M. Raiskii, V. A. Slavnyi, and E. Ya. Shreider, Tables of Spectral Lines, IFI/Plenum Press, New York (1970).

    Google Scholar 

  44. R. L. Kelly, J. Phys. Chem. Ref. Data 16, Suppl. 1 (1987).

    Google Scholar 

  45. A. R. Striganov and N. S. Sventitskii, Tables of Spectral Lines of Neutral and Ionized Atoms, IFI/Plenum Press, New York (1968).

    Google Scholar 

  46. D. E. Kelleher, Database for Atomic Spectroscopy, NIST Standard Reference Database 61, National Institute of Standards and Technology (NIST), (1995).

    Google Scholar 

  47. C. E. Moore, Tables of Spectra for Hydrogen, Carbon, Nitrogen and Oxygen Atoms and Ions (J. W. Gallagher, ed.), CRC Press, Boca Raton, Florida (1993).

    Google Scholar 

  48. G. A. Odintzova and A. R. Striganov, J. Phys. Chem. Ref. Data 8, 63 (1979).

    Article  ADS  Google Scholar 

  49. V. Kaufman and W. C. Martin, J. Phys. Chem. Ref. Data 20, 83 (1991).

    Article  ADS  Google Scholar 

  50. V. Kaufman and W. C. Martin, J. Phys. Chem. Ref. Data 20, 775 (1991).

    Article  ADS  Google Scholar 

  51. C. E. Moore, Selected Tables of Atomic Spectra, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. (U.S.) 3, Sections 1 and 2 (1965, 1967).

    Google Scholar 

  52. K. Mori, W. L. Wiese, T. Shirai, Y. Nakai, K. Ozawa, and T. Kato, At. Data Nucl. Data Tables 34, 79 (1986).

    Article  ADS  Google Scholar 

  53. T. Shirai, T. Nakagaki, J. Sugar, and W. L. Wiese, J. Phys. Chem. Ref. Data 21, 273 (1992).

    Article  ADS  Google Scholar 

  54. T. Shirai, Y. Nakai, T. Nakagaki, J. Sugar, and W. L. Wiese, J. Phys. Chem. Ref. Data 22, 1279 (1993).

    Article  ADS  Google Scholar 

  55. T. Shirai, Y. Funatake, K. Mori, J. Sugar, and W. L. Wiese, J. Phys. Chem. Ref. Data 19, 127 (1990).

    Article  ADS  Google Scholar 

  56. T. Shirai, K. Mori, J. Sugar, W. L. Wiese, Y. Nakai, and K. Ozawa, At. Data Nucl. Data Tables 37, 235 (1987).

    Article  ADS  Google Scholar 

  57. T. Shirai, T. Nakagaki, Y. Nakai, J. Sugar, K. Ishii, and K. Mori, J. Phys. Chem. Ref. Data 20, 1 (1991).

    Article  ADS  Google Scholar 

  58. T. Shirai, Y. Nakai, K. Ozawa, K. Ishii, J. Sugar, and K. Mori, J. Phys. Chem. Ref. Data 16, 327 (1987).

    Article  ADS  Google Scholar 

  59. C. E. Moore, Atomic Energy Levels, Natl. Bur. Stand. (U.S.), Circ. 467, Vol. I (1949); Vol. II (1952); Vol. III (1958); reprinted as Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. (U.S.) 35 (1971), U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  60. J. Sugar and C. H. Corliss, Atomic Energy Levels of the Iron-Period Elements: Potassium through Nickel, J. Phys. Chem. Ref. Data 14, Suppl. 2 (1985).

    Google Scholar 

  61. W. C. Martin, J. Phys. Chem. Ref. Data, 2, 257 (1973);

    Article  ADS  Google Scholar 

  62. W. C. Martin, Phys. Rev. A 36, 3575 (1987).

    Article  ADS  Google Scholar 

  63. W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 9, 1 (1980).

    Article  ADS  Google Scholar 

  64. W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 8, 817 (1979).

    Article  ADS  Google Scholar 

  65. W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 12, 323 (1983).

    Article  ADS  Google Scholar 

  66. J. Sugar and A. Musgrove, J. Phys. Chem. Ref. Data 19, 527 (1990).

    Article  ADS  Google Scholar 

  67. J. Sugar and A. Musgrove, J. Phys. Chem. Ref. Data 20, 859 (1991).

    Article  ADS  Google Scholar 

  68. J. Sugar and A. Musgrove, J. Phys. Chem. Ref. Data 17, 155 (1988).

    Article  ADS  Google Scholar 

  69. J. R. Fuhr and W. L. Wiese, in CRC Handbook of Chemistry and Physics, 71st and following editions (D. R. Lide, ed.), CRC Press, Boca Raton, Florida (1990, 1991, 1992, 1993, 1994).

    Google Scholar 

  70. W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities—Hydrogen through Neon, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. (U.S.) 4, U.S. Government Printing Office, Washington, D.C. (1966).

    Google Scholar 

  71. W. L. Wiese, M. W. Smith, and B. M. Miles, Atomic Transition Probabilities—Sodium through Calcium, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. (U.S.) 22, U.S. Government Printing Office, Washington, D.C. (1969).

    Google Scholar 

  72. G. A. Martin, J. R. Fuhr, and W. L. Wiese, Atomic Transition Probabilities—Scandium through Manganese, J. Phys. Chem. Ref. Data 17, Suppl. 3 (1988).

    Google Scholar 

  73. J. R. Fuhr, G. A. Martin, and W. L. Wiese, Atomic Transition Probabilities—Iron through Nickel, J. Phys. Chem. Ref. Data 17, Suppl. 4 (1988).

    Google Scholar 

  74. L. S. Savanov, J. Huovelin, and I. Tuominen, Astron. Astrophys. Suppl. Ser. 86, 531 (1990).

    ADS  Google Scholar 

  75. G. Nave, S. E. Johansson, R. C. M. Learner, A. P. Thorne, and J. W. Brault, Astrophys. J. Suppl. Ser. 94, 221 (1994).

    Article  ADS  Google Scholar 

  76. F. M. J. Sawey and K. A. Berrington, J. Phys. B 25, 1451 (1992).

    Article  ADS  Google Scholar 

  77. S. N. Nahar and A. K. Pradhan, J. Phys. B 26, 1109 (1993).

    Article  ADS  Google Scholar 

  78. J. O. Ekberg, Astron. Astrophys. Suppl. Ser. 101, 1 (1993).

    ADS  Google Scholar 

  79. W. H. Parkinson, in Atomic and Molecular Data for Space Astronomy, (P. L. Smith and W. L. Wiese, eds.), Lecture Notes in Physics, Vol. 407, Springer-Verlag, Berlin (1992), p. 149.

    Chapter  Google Scholar 

  80. U. G. Jorgensen, in Astrophysical Applications of Powerful New Atomic Databases (S.J. Adelman and W. L. Wiese, eds.), Astronomical Society of the Pacific Conference Series, 78 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wiese, W.L. (1995). Spectroscopic Processes and Data for Fusion Edge Plasmas. In: Janev, R.K. (eds) Atomic and Molecular Processes in Fusion Edge Plasmas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9319-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9319-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9321-5

  • Online ISBN: 978-1-4757-9319-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics