Electron Collision Processes Involving Hydrocarbons

  • Hiroyuki Tawara


Currently, graphites or carbon-coated materials are most commonly used as the plasma-facing inner walls of various fusion plasma research devices because of their superior qualities at high temperatures and because low atomic number is one of the most important factors in reducing radiation losses from high-temperature main plasmas. On the other hand, they are known to be significantly eroded through interactions with atomic hydrogens in plasmas in particular circumstances.


Electron Impact Ionization Cross Section Collision Cross Section Emission Cross Section Dissociative Ionization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, and H. Tawara, At. Data Nucl. Data Tables 31, 1 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    W. Eckstein, J. Bodansky, and J. Roth, Nucl. Fusion, Supplement 1, 31 (1991).ADSGoogle Scholar
  3. 3.
    J. Roth, E. Vietzke, and A. A. Haasz, Nucl. Fusion, Supplement 1, 63 (1991).ADSGoogle Scholar
  4. 4.
    E. Vietzke, K. Flaskamp, and V. Philipps, J. Nucl. Mater. 128/129, 545 (1984);ADSCrossRefGoogle Scholar
  5. 4a.
    E. Vietzke and V. Philipps, Fusion Technol. 15, 108 (1989).Google Scholar
  6. 5.
    R. Yamada, J. Vac. Sci. Technol. A5, 305 (1987);ADSCrossRefGoogle Scholar
  7. 5a.
    R. Yamada, J. Nucl. Mater. 145/146, 359 (1987).ADSCrossRefGoogle Scholar
  8. 6.
    W. D. Langer, Nucl. Fusion 22, 751 (1992).CrossRefGoogle Scholar
  9. 7.
    A. B. Ehrhardt and W. D. Langer, Collisional Processes of Hydrocarbons in Hydrogen Plasmas, Princeton Plasma Physics Laboratory, Princeton University, Report PPPL-2477, 1987.Google Scholar
  10. 8.
    H. Tawara, Y. Itikawa, H. Nishimura, H. Tanaka, and Y. Nakamura, Nucl. Fusion, Supplement 2, 41 (1992); see also Collision Data Involving Hydrocarbon Molecules, National Institute for Fusion Science, NIFS-DATA-6, 1990.ADSGoogle Scholar
  11. 9.
    F. A. Baiocchi, R. C. Wentzel, and R. S. Freund, Phys. Rev. Lett. 53, 771 (1984).ADSCrossRefGoogle Scholar
  12. 10.
    M. A. Lennon, D. S. Elliot, and A. Crowe, Critical Survey of Electron Impact Ionization Data for Selected Molecules, The Queen’s University of Belfast, Department of Computer Science Report (unpublished), 1988.Google Scholar
  13. 11.
    M. Hayashi, in Non-Equilibrium Processes in Partially Ionized Gases, NATO ASI Series, Ser. B, No. 320 (M. Capitelli and J. N. Bardsley, eds.), Plenum Press, New York (1990), p. 333;CrossRefGoogle Scholar
  14. 11a.
    M. Hayashi, in Swarm Studies and Inelastic Electron Molecule Collisions (L. C. Pitchford, B. V. McKoy, A. Chutjian, and S. Trajmar, eds.), Springer-Verlag, Berlin (1987), p. 167.CrossRefGoogle Scholar
  15. 12.
    R. Browning and H. B. Gilbody, J. Phys. B 1, 1149 (1968).ADSCrossRefGoogle Scholar
  16. 13.
    H. Tawara, Y. Itikawa, H. Nishimura, and M. Yoshino, J. Phys. Chem. Ref. Data 19, 617 (1990).ADSCrossRefGoogle Scholar
  17. 14.
    V. Grill, G. Walder, D. Margreiter, T. Rauth, H. U. Poll, P. Scheier, and T. D. Mark, Z. Phys. D 25, 217 (1993).ADSCrossRefGoogle Scholar
  18. 15.
    H. Winter, J. Chem. Phys. 63, 3462 (1975);ADSCrossRefGoogle Scholar
  19. 15a.
    H. Winter, Chem. Phys. 36, 353 (1979).ADSCrossRefGoogle Scholar
  20. 16.
    J. Perrin, J. P. Schmitt, G. de Rosny, B. Drevillon, J. Hue, and A. Lloret, Chem. Phys. 73, 383 (1982).CrossRefGoogle Scholar
  21. 17.
    C. E. Melton and P. S. Rudolph, J. Chem. Phys. 47, 1771 (1967).ADSCrossRefGoogle Scholar
  22. 18.
    B. Adamczyk, A. J. H. Boerboom, and J. Kistemaker, J. Chem. Phys. 44, 4640 (1966).ADSCrossRefGoogle Scholar
  23. 19.
    T. Nakano, H. Toyoda, and H. Sugai, Jpn. J. Appl. Phys. 30, 2912 (1991).ADSCrossRefGoogle Scholar
  24. 20.
    C. Winstead, Q. Sun, V. McKoy, J. L. da Silva Lino, and M. A. P. Lima, Z. Phys. D 24, 141 (1992).ADSCrossRefGoogle Scholar
  25. 21.
    D. P. Wang, L. C. Lee, and S. K. Srivastava, Chem. Phys. Lett. 152, 513 (1988).ADSCrossRefGoogle Scholar
  26. 22.
    V. Grill, G. Walder, P. Scheier, M. Kurdel, and T. D. Mark, Int. J. Mass Spectrom. Ion Processes 129, 31 (1993).ADSCrossRefGoogle Scholar
  27. 23.
    H. Chatham, D. Hils, R. Robertson, and A. Gallagher, J. Chem. Phys. 81, 1770 (1984).ADSCrossRefGoogle Scholar
  28. 24.
    C. Melton, J. Chem. Phys. 37, 562 (1962).ADSCrossRefGoogle Scholar
  29. 25.
    D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).ADSCrossRefGoogle Scholar
  30. 26.
    H. Nishimura and H. Tawara, J. Phys. B, 27, 2063 (1994).ADSCrossRefGoogle Scholar
  31. 27.
    A. Gaudin and R. Hagmann, J. Chim. Phys. 64, 917 (1967);Google Scholar
  32. 27a.
    A. Gaudin and R. Hagmann, J.Chim. Phys. 64, 1209 (1967).Google Scholar
  33. 28.
    J. T. Tate and P. T. Smith, Phys. Rev. 39, 270 (1932).ADSCrossRefGoogle Scholar
  34. 29.
    H. Nishimura and H. Tawara, J. Phys. B 24, L363 (1991).ADSCrossRefGoogle Scholar
  35. 30.
    C. Winstead, Q. Sun, and V. McKoy, Chem. Phys. 96, 4246 (1992).ADSGoogle Scholar
  36. 31.
    R. Locht and J. Momigny, Chem. Phys. 49, 173 (1980).ADSCrossRefGoogle Scholar
  37. 32.
    K. Ito, N. Oda, Y. Hatano, and T. Tsuboi, Chem. Phys. 21, 203 (1977).CrossRefGoogle Scholar
  38. 33.
    T. Ogawa, J. Kurawaki, and M. Higo, Chem. Phys. 61, 181 (1981).CrossRefGoogle Scholar
  39. 34.
    N. Yonekura, K. Nakashima, and T. Ogawa, J. Chem. Phys. 97, 6276 (1992);ADSCrossRefGoogle Scholar
  40. 34a.
    Yonekura, T. Tsuboi, H. Tomura, K. Nakashima, and T. Ogawa, Jpn. J. Appl. Phys. 32, 3296 (1993).ADSCrossRefGoogle Scholar
  41. 35.
    T. G. Finn, B. L. Carbahan, W. C. Wells, and E. C. Zipf, J. Chem. Phys. 63, 1596 (1975).ADSCrossRefGoogle Scholar
  42. 36.
    J. A. Schiavone, D. E. Donahue, and R. S. Freund, J. Chem. Phys. 67, 759 (1977).ADSCrossRefGoogle Scholar
  43. 37.
    J. B. A. Mitchell, Phys. Rep. 186, 215 (1990).ADSCrossRefGoogle Scholar
  44. 38.
    H. Takagi, N. Kosugi, and M. Le Dourneuf, J. Phys. B 24, 711 (1991);ADSCrossRefGoogle Scholar
  45. 38a.
    H. Takagi, in The Physics of Electronic and Atomic Collisions (T. Andersen, B. Fastrup, F. Folkmann, H. Knudsen, and N. Andersen, eds.), AIP Conf. Proc., No. 245, American Institute of Physics, New York (1993), p. 442.Google Scholar
  46. 39.
    P. Forck, C. Broude, M. Grieser, D. Habs, J. Kenntner, J. Liebmann, R. Repnow, A. Amitay, and D. Zaifman, Phys. Rev. Lett. 72, 2002 (1994).ADSCrossRefGoogle Scholar
  47. 40.
    P. M. Mul, J. B. A. Mitchell, V. S. D’Angelo, P. Defrance, J. W. McGowan, and H. R. Froelich, J. Phys. B 14, 1353 (1981).ADSCrossRefGoogle Scholar
  48. 41.
    D. Gregory and H. Tawara, Abstract Book of XVIth International Conference on Physics of Electronic and Atomic Collisions, New York, 1989, p. 352.Google Scholar
  49. 42.
    J. F. M. Aarts, C. I. M. Beenakker, and F. J. de Heer, Physica 53, 32 (1971).ADSCrossRefGoogle Scholar
  50. 43.
    C. I. M. Beenakker and F. J. de Heer, Chem. Phys. 6, 291 (1974).CrossRefGoogle Scholar
  51. 44.
    K. D. Pang, J. M. Ajello, B. Franklin, and D. E. Shemannsky, J. Chem. Phys. 86, 2750 (1987).ADSCrossRefGoogle Scholar
  52. 45.
    I. V. Sushanin and S. M. Mishko, Sov. Astron. 18, 265 (1974).ADSGoogle Scholar
  53. 46.
    C. I. M. Beenakker, P. J. Verbeek, G. R. Möhlmann, and F. J. de Heer, J. Quant. Spectrosc. Radiat. Transfer 15, 333 (1975).ADSCrossRefGoogle Scholar
  54. 47.
    M. Tokeshi, K. Nakajima, and T. Ogawa, Chem. Lett. (Jpn.) 1993, 995.Google Scholar
  55. 48.
    A. Pospieszczyk, Y. Ra, Y. Hirooka, R. W. Conn, D. M. Goeble, B. LaBombard, and R. E. Nygren, Spectroscopic Studies of Carbon Containing Molecules and Their Breakup in PISCES-A, University of California Los Angeles, Report UCLA-PPG-1251, 1989;CrossRefGoogle Scholar
  56. 48a.
    A. Pospieszczyk, J. Hogan, Y. Ra, Y. Hirooka, R. W. Conn, D. Goebel, B. LaBombard, and R. E. Nygren, in 6th European Conference on Controlled Fusion and Plasma Physics, Vol. 13B (S. Segre, H. Knoepfel, and E. Sindoni, eds.), European Physical Society, Geneva (1989), Part III, p. 987.Google Scholar
  57. 49.
    T. Ogawa, Y. Ueda, and M. Higo, Bull. Chem. Soc. Jpn. 56, 3033 (1983).CrossRefGoogle Scholar
  58. 50.
    Nucl. Fusion, Supplement 3 (1992).Google Scholar
  59. 51.
    H. Tawara, Atomic and Molecular Data for H2O, CO and CO2 Relevant to Edge Plasma Impurities, National Institute for Fusion Science, NIFS-DATA-19, 1992.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Hiroyuki Tawara
    • 1
  1. 1.National Institute for Fusion ScienceNagoyaJapan

Personalised recommendations