Skip to main content

Electron Collision Processes Involving Hydrocarbons

  • Chapter

Abstract

Currently, graphites or carbon-coated materials are most commonly used as the plasma-facing inner walls of various fusion plasma research devices because of their superior qualities at high temperatures and because low atomic number is one of the most important factors in reducing radiation losses from high-temperature main plasmas. On the other hand, they are known to be significantly eroded through interactions with atomic hydrogens in plasmas in particular circumstances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, and H. Tawara, At. Data Nucl. Data Tables 31, 1 (1994).

    Article  ADS  Google Scholar 

  2. W. Eckstein, J. Bodansky, and J. Roth, Nucl. Fusion, Supplement 1, 31 (1991).

    ADS  Google Scholar 

  3. J. Roth, E. Vietzke, and A. A. Haasz, Nucl. Fusion, Supplement 1, 63 (1991).

    ADS  Google Scholar 

  4. E. Vietzke, K. Flaskamp, and V. Philipps, J. Nucl. Mater. 128/129, 545 (1984);

    Article  ADS  Google Scholar 

  5. E. Vietzke and V. Philipps, Fusion Technol. 15, 108 (1989).

    Google Scholar 

  6. R. Yamada, J. Vac. Sci. Technol. A5, 305 (1987);

    Article  ADS  Google Scholar 

  7. R. Yamada, J. Nucl. Mater. 145/146, 359 (1987).

    Article  ADS  Google Scholar 

  8. W. D. Langer, Nucl. Fusion 22, 751 (1992).

    Article  Google Scholar 

  9. A. B. Ehrhardt and W. D. Langer, Collisional Processes of Hydrocarbons in Hydrogen Plasmas, Princeton Plasma Physics Laboratory, Princeton University, Report PPPL-2477, 1987.

    Google Scholar 

  10. H. Tawara, Y. Itikawa, H. Nishimura, H. Tanaka, and Y. Nakamura, Nucl. Fusion, Supplement 2, 41 (1992); see also Collision Data Involving Hydrocarbon Molecules, National Institute for Fusion Science, NIFS-DATA-6, 1990.

    ADS  Google Scholar 

  11. F. A. Baiocchi, R. C. Wentzel, and R. S. Freund, Phys. Rev. Lett. 53, 771 (1984).

    Article  ADS  Google Scholar 

  12. M. A. Lennon, D. S. Elliot, and A. Crowe, Critical Survey of Electron Impact Ionization Data for Selected Molecules, The Queen’s University of Belfast, Department of Computer Science Report (unpublished), 1988.

    Google Scholar 

  13. M. Hayashi, in Non-Equilibrium Processes in Partially Ionized Gases, NATO ASI Series, Ser. B, No. 320 (M. Capitelli and J. N. Bardsley, eds.), Plenum Press, New York (1990), p. 333;

    Chapter  Google Scholar 

  14. M. Hayashi, in Swarm Studies and Inelastic Electron Molecule Collisions (L. C. Pitchford, B. V. McKoy, A. Chutjian, and S. Trajmar, eds.), Springer-Verlag, Berlin (1987), p. 167.

    Chapter  Google Scholar 

  15. R. Browning and H. B. Gilbody, J. Phys. B 1, 1149 (1968).

    Article  ADS  Google Scholar 

  16. H. Tawara, Y. Itikawa, H. Nishimura, and M. Yoshino, J. Phys. Chem. Ref. Data 19, 617 (1990).

    Article  ADS  Google Scholar 

  17. V. Grill, G. Walder, D. Margreiter, T. Rauth, H. U. Poll, P. Scheier, and T. D. Mark, Z. Phys. D 25, 217 (1993).

    Article  ADS  Google Scholar 

  18. H. Winter, J. Chem. Phys. 63, 3462 (1975);

    Article  ADS  Google Scholar 

  19. H. Winter, Chem. Phys. 36, 353 (1979).

    Article  ADS  Google Scholar 

  20. J. Perrin, J. P. Schmitt, G. de Rosny, B. Drevillon, J. Hue, and A. Lloret, Chem. Phys. 73, 383 (1982).

    Article  Google Scholar 

  21. C. E. Melton and P. S. Rudolph, J. Chem. Phys. 47, 1771 (1967).

    Article  ADS  Google Scholar 

  22. B. Adamczyk, A. J. H. Boerboom, and J. Kistemaker, J. Chem. Phys. 44, 4640 (1966).

    Article  ADS  Google Scholar 

  23. T. Nakano, H. Toyoda, and H. Sugai, Jpn. J. Appl. Phys. 30, 2912 (1991).

    Article  ADS  Google Scholar 

  24. C. Winstead, Q. Sun, V. McKoy, J. L. da Silva Lino, and M. A. P. Lima, Z. Phys. D 24, 141 (1992).

    Article  ADS  Google Scholar 

  25. D. P. Wang, L. C. Lee, and S. K. Srivastava, Chem. Phys. Lett. 152, 513 (1988).

    Article  ADS  Google Scholar 

  26. V. Grill, G. Walder, P. Scheier, M. Kurdel, and T. D. Mark, Int. J. Mass Spectrom. Ion Processes 129, 31 (1993).

    Article  ADS  Google Scholar 

  27. H. Chatham, D. Hils, R. Robertson, and A. Gallagher, J. Chem. Phys. 81, 1770 (1984).

    Article  ADS  Google Scholar 

  28. C. Melton, J. Chem. Phys. 37, 562 (1962).

    Article  ADS  Google Scholar 

  29. D. Rapp and P. Englander-Golden, J. Chem. Phys. 43, 1464 (1965).

    Article  ADS  Google Scholar 

  30. H. Nishimura and H. Tawara, J. Phys. B, 27, 2063 (1994).

    Article  ADS  Google Scholar 

  31. A. Gaudin and R. Hagmann, J. Chim. Phys. 64, 917 (1967);

    Google Scholar 

  32. A. Gaudin and R. Hagmann, J.Chim. Phys. 64, 1209 (1967).

    Google Scholar 

  33. J. T. Tate and P. T. Smith, Phys. Rev. 39, 270 (1932).

    Article  ADS  Google Scholar 

  34. H. Nishimura and H. Tawara, J. Phys. B 24, L363 (1991).

    Article  ADS  Google Scholar 

  35. C. Winstead, Q. Sun, and V. McKoy, Chem. Phys. 96, 4246 (1992).

    ADS  Google Scholar 

  36. R. Locht and J. Momigny, Chem. Phys. 49, 173 (1980).

    Article  ADS  Google Scholar 

  37. K. Ito, N. Oda, Y. Hatano, and T. Tsuboi, Chem. Phys. 21, 203 (1977).

    Article  Google Scholar 

  38. T. Ogawa, J. Kurawaki, and M. Higo, Chem. Phys. 61, 181 (1981).

    Article  Google Scholar 

  39. N. Yonekura, K. Nakashima, and T. Ogawa, J. Chem. Phys. 97, 6276 (1992);

    Article  ADS  Google Scholar 

  40. Yonekura, T. Tsuboi, H. Tomura, K. Nakashima, and T. Ogawa, Jpn. J. Appl. Phys. 32, 3296 (1993).

    Article  ADS  Google Scholar 

  41. T. G. Finn, B. L. Carbahan, W. C. Wells, and E. C. Zipf, J. Chem. Phys. 63, 1596 (1975).

    Article  ADS  Google Scholar 

  42. J. A. Schiavone, D. E. Donahue, and R. S. Freund, J. Chem. Phys. 67, 759 (1977).

    Article  ADS  Google Scholar 

  43. J. B. A. Mitchell, Phys. Rep. 186, 215 (1990).

    Article  ADS  Google Scholar 

  44. H. Takagi, N. Kosugi, and M. Le Dourneuf, J. Phys. B 24, 711 (1991);

    Article  ADS  Google Scholar 

  45. H. Takagi, in The Physics of Electronic and Atomic Collisions (T. Andersen, B. Fastrup, F. Folkmann, H. Knudsen, and N. Andersen, eds.), AIP Conf. Proc., No. 245, American Institute of Physics, New York (1993), p. 442.

    Google Scholar 

  46. P. Forck, C. Broude, M. Grieser, D. Habs, J. Kenntner, J. Liebmann, R. Repnow, A. Amitay, and D. Zaifman, Phys. Rev. Lett. 72, 2002 (1994).

    Article  ADS  Google Scholar 

  47. P. M. Mul, J. B. A. Mitchell, V. S. D’Angelo, P. Defrance, J. W. McGowan, and H. R. Froelich, J. Phys. B 14, 1353 (1981).

    Article  ADS  Google Scholar 

  48. D. Gregory and H. Tawara, Abstract Book of XVIth International Conference on Physics of Electronic and Atomic Collisions, New York, 1989, p. 352.

    Google Scholar 

  49. J. F. M. Aarts, C. I. M. Beenakker, and F. J. de Heer, Physica 53, 32 (1971).

    Article  ADS  Google Scholar 

  50. C. I. M. Beenakker and F. J. de Heer, Chem. Phys. 6, 291 (1974).

    Article  Google Scholar 

  51. K. D. Pang, J. M. Ajello, B. Franklin, and D. E. Shemannsky, J. Chem. Phys. 86, 2750 (1987).

    Article  ADS  Google Scholar 

  52. I. V. Sushanin and S. M. Mishko, Sov. Astron. 18, 265 (1974).

    ADS  Google Scholar 

  53. C. I. M. Beenakker, P. J. Verbeek, G. R. Möhlmann, and F. J. de Heer, J. Quant. Spectrosc. Radiat. Transfer 15, 333 (1975).

    Article  ADS  Google Scholar 

  54. M. Tokeshi, K. Nakajima, and T. Ogawa, Chem. Lett. (Jpn.) 1993, 995.

    Google Scholar 

  55. A. Pospieszczyk, Y. Ra, Y. Hirooka, R. W. Conn, D. M. Goeble, B. LaBombard, and R. E. Nygren, Spectroscopic Studies of Carbon Containing Molecules and Their Breakup in PISCES-A, University of California Los Angeles, Report UCLA-PPG-1251, 1989;

    Book  Google Scholar 

  56. A. Pospieszczyk, J. Hogan, Y. Ra, Y. Hirooka, R. W. Conn, D. Goebel, B. LaBombard, and R. E. Nygren, in 6th European Conference on Controlled Fusion and Plasma Physics, Vol. 13B (S. Segre, H. Knoepfel, and E. Sindoni, eds.), European Physical Society, Geneva (1989), Part III, p. 987.

    Google Scholar 

  57. T. Ogawa, Y. Ueda, and M. Higo, Bull. Chem. Soc. Jpn. 56, 3033 (1983).

    Article  Google Scholar 

  58. Nucl. Fusion, Supplement 3 (1992).

    Google Scholar 

  59. H. Tawara, Atomic and Molecular Data for H2O, CO and CO2 Relevant to Edge Plasma Impurities, National Institute for Fusion Science, NIFS-DATA-19, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tawara, H. (1995). Electron Collision Processes Involving Hydrocarbons. In: Janev, R.K. (eds) Atomic and Molecular Processes in Fusion Edge Plasmas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9319-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9319-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9321-5

  • Online ISBN: 978-1-4757-9319-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics