Reactive Ion-Molecule Collisions Involving Hydrogen and Helium

  • F. Linder
  • R. K. Janev
  • J. Botero


Experiments on the present generation of large tokamaks have shown that the processes taking place at the plasma edge play an important role for the overall plasma performance and may even have a decisive influence on the central plasma parameters. These observations have stimulated increased interest in understanding the physics of the edge plasma in a more fundamental way.1–6


Tandem Mass Spectrometry Total Cross Section Vibrational State Electron Transfer Reaction Dissociative Electron Capture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Tawara and R. A. Phaneuf, Comments At. Mol. Phys. 21, 177 (1988).Google Scholar
  2. 2.
    R. K. Janev, M. F. A. Harrison, and H. W. Drawin, Nucl. Fusion 29, 109 (1989).CrossRefGoogle Scholar
  3. 3.
    R. K. Janev, Comments At. Mol. Phys. 26, 83 (1991).Google Scholar
  4. 4.
    D. Reiter, in Atomic and Plasma-Material Interaction Processes in Controlled Thermonuclear Fusion (R. K. Janev and H. W. Drawin, eds.), Elsevier, Amsterdam (1993), p. 243.Google Scholar
  5. 5.
    M. F. A. Harrison, in Atomic and Plasma-Material Interaction Processes in Controlled Thermonuclear Fusion (R. K. Janev and H. W. Drawin, eds.), Elsevier, Amsterdam (1993), p. 285.Google Scholar
  6. 6.
    R. K. Janev, in Review of Fundamental Processes and Applications of Atoms and Ions (C. D. Lin, ed.), World Scientific, Singapore (1993), p. 1.CrossRefGoogle Scholar
  7. 7.
    R. K. Janev, W. D. Langer, K. Evans, and D. E. Post, Elementary Processes in Hydrogen-Helium Plasmas, Springer-Verlag, Heidelberg (1987).CrossRefGoogle Scholar
  8. 8.
    A. V. Phelps, J. Phys. Chem. Ref. Data 19, 653 (1990).ADSCrossRefGoogle Scholar
  9. 9.
    C. F. Barnett, Collisions of H, H2, He and Li Atoms and Ions with Atoms and Molecules, Atomic Data for Fusion, Vol. 1, Oak Ridge National Laboratory, Report ORNL-6086, 1990.Google Scholar
  10. 10.
    H. Tawara, Y. Itikawa, Y. Itoh, T. Kato, H. Nishimura, S. Ohtani, H. Takagi, K. Takayanagi, and M. Yoshino, Atomic Data Involving Hydrogens Relevant to Edge Plasmas, Institute of Plasma Physics, Nagoya, Japan, Report IPPJ-AM-46, 1986.Google Scholar
  11. 11.
    P. Reinig, M. Zimmer, and F. Linder, Atomic and Plasma-Material Interaction Data for Fusion (Nucl. Fusion, Supplement) 2, 95 (1992).Google Scholar
  12. 12.
    D. Gerlich, Adv. Chem. Phys. 82, 1 (1992).CrossRefGoogle Scholar
  13. 13.
    G. Bischof and F. Linder, Z. Phys. D 1, 303 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    D. R. Miller, in Atomic and Molecular Beam Methods, Vol. 1 (G. Scoles, ed.), Oxford University Press, Oxford (1988), p. 14.Google Scholar
  15. 15.
    S. Trajmar and D. F. Register, in Electron-Molecule Collisions (I. Shimamura and K. Takayanagi, eds.), Plenum, New York (1984), p. 427.CrossRefGoogle Scholar
  16. 16.
    J. C. Nickel, P. W. Zetner, G. Shen, and S. Trajmar, J. Phys. E: Sci. Instrum. 22, 730 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    C. Y. Ng, in Techniques for the Study of Ion-Molecule Reactions (J. M. Farrar and W. H. Saunders, eds.), John Wiley & Sons, New York (1988), p. 417.Google Scholar
  18. 18.
    C. Y. Ng, Adv. Chem. Phys. 82, 401 (1992).CrossRefGoogle Scholar
  19. 19.
    I. Koyano and K. Tanaka, Adv. Chem. Phys. 82, 263 (1992).CrossRefGoogle Scholar
  20. 20.
    S. L. Anderson, Adv. Chem. Phys. 82, 177 (1992).CrossRefGoogle Scholar
  21. 21.
    M. G. Holliday, J. T. Muckerman, and L. Friedman, J. Chem. Phys. 54, 1058 (1971).ADSCrossRefGoogle Scholar
  22. 22.
    M. W. Gealy and B. Van Zyl, Phys. Rev. A 36, 3091 (1987).ADSCrossRefGoogle Scholar
  23. 23.
    W. H. Cramer, J. Chem. Phys. 35, 836 (1961).ADSCrossRefGoogle Scholar
  24. 24.
    D. W. Koopman, Phys. Rev. 154, 79 (1967).ADSCrossRefGoogle Scholar
  25. 25.
    G. Ochs and E. Teloy, J. Chem. Phys. 61, 4930 (1974).ADSCrossRefGoogle Scholar
  26. 26.
    C. Schlier, U. Nowotny, and E. Teloy, Chem. Phys. 111, 401 (1987).CrossRefGoogle Scholar
  27. 27.
    W. B. Maier II, J. Chem. Phys. 54, 2732 (1971).ADSCrossRefGoogle Scholar
  28. 28.
    J. R. Krenos and R. Wolfgang, J. Chem Phys. 52, 5961 (1970).ADSCrossRefGoogle Scholar
  29. 29.
    W. H. Cramer and A. B. Marcus, J.Chem. Phys. 32, 186 (1960).ADSCrossRefGoogle Scholar
  30. 30.
    W. L. Fite, R. T. Brackmann, and W. R. Snow, Phys. Rev. 112, 1161 (1958).ADSCrossRefGoogle Scholar
  31. 31.
    H. B. Gilbody and J. B. Hasted, Proc. R. Soc. London, Ser. A. 238, 334 (1956).ADSGoogle Scholar
  32. 32.
    H. L. Rothwell, B. Van Zyl, and R. C. Amme, J. Chem. Phys. 61, 3851 (1974).ADSCrossRefGoogle Scholar
  33. 33.
    H. C. Hayden and R. C. Amme, Phys. Rev. 172, 104 (1968).ADSCrossRefGoogle Scholar
  34. 34.
    J. B. H. Stedeford and J. B. Hasted, Proc. R. Soc. London, Ser. A. 227, 466 (1955).ADSCrossRefGoogle Scholar
  35. 35.
    R. N. Stocker and H. Neumann, J. Chem. Phys. 61, 3852 (1974).ADSCrossRefGoogle Scholar
  36. 36.
    R. L. C. Wu and D. G. Hopper, Chem. Phys. 57, 385 (1981).CrossRefGoogle Scholar
  37. 37.
    E. Gustafsson and E. Lindholm, Ark. Fys. 18, 219 (1960).Google Scholar
  38. 38.
    E. G. Jones, R. L. C. Wu, B. M. Hughes, T. O. Tiernan, and D. G. Hopper, J. Chem. Phys. 73, 5631 (1980).ADSCrossRefGoogle Scholar
  39. 39.
    R. W. Rozett and W. S. Koski, J. Chem. Phys. 48, 533 (1968).ADSCrossRefGoogle Scholar
  40. 40.
    T. F. Moran and R. J. Conrads, J. Chem. Phys. 58, 3793 (1973).ADSCrossRefGoogle Scholar
  41. 41.
    D. G. Hopper and R. L. C. Wu, Chem. Phys. Lett. 81, 230 (1981).ADSCrossRefGoogle Scholar
  42. 42.
    J. R. Krenos, R. K. Preston, R. Wolfgang, and J. C. Tully, J. Chem. Phys. 60, 1634 (1974).ADSCrossRefGoogle Scholar
  43. 43.
    H. Villinger, M. J. Henchman, and W. Lindinger, J. Chem. Phys. 76, 1590 (1982).ADSCrossRefGoogle Scholar
  44. 44.
    K. L. Wendell and P. K. Pol, J. Chem. Phys. 61, 2059 (1974).ADSCrossRefGoogle Scholar
  45. 45.
    W. R. Gentry, D. J. McClure, and C. H. Douglass, Rev. Sci. Instrum. 46, 367 (1975).ADSCrossRefGoogle Scholar
  46. 46.
    R. H. Neynaber and S. M. Trujillo, Phys. Rev. 167, 63 (1968).ADSCrossRefGoogle Scholar
  47. 47.
    J. P. Shao and C. Y. Ng, J. Chem. Phys. 84, 4317 (1986).ADSCrossRefGoogle Scholar
  48. 48.
    I. Koyano and K. Tanaka, J. Chem. Phys. 72, 4858 (1980).ADSCrossRefGoogle Scholar
  49. 49.
    L. T. Specht, K. D. Foster, and E. E. Muschlitz, J. Chem. Phys. 63, 1582 (1975).ADSCrossRefGoogle Scholar
  50. 50.
    C. F. Giese and W. B. Maier II, J. Chem. Phys. 39, 739 (1963).ADSCrossRefGoogle Scholar
  51. 51.
    D.W. Vance and T. L. Bailey, J. Chem. Phys. 44, 486 (1966).ADSCrossRefGoogle Scholar
  52. 52.
    T. F. Moran and J. R. Roberts, J. Chem. Phys. 49, 3411 (1968).ADSCrossRefGoogle Scholar
  53. 53.
    C. H. Douglass, D. J. McClure, and W. R. Gentry, J. Chem. Phys. 67, 4931 (1977).ADSCrossRefGoogle Scholar
  54. 54.
    C. H. Douglass, G. Ringer, and W. R. Gentry, J. Chem. Phys. 76, 2423 (1982).ADSCrossRefGoogle Scholar
  55. 55.
    R. H. Neynaber and G. D. Magnuson, J. Chem. Phys. 59, 825 (1973).ADSCrossRefGoogle Scholar
  56. 56.
    J. A. Rutherford and D. A. Vroom, J. Chem. Phys. 58, 4076 (1973).ADSCrossRefGoogle Scholar
  57. 57.
    C. Schlier, cited in: F. Schneider, U. Havemann, L. Zülicke, and Z. Herman, Chem. Phys. Lett. 48, 439 (1977).ADSCrossRefGoogle Scholar
  58. 58.
    J. A. Rutherford and D. A. Vroom, J. Chem. Phys. 59, 4561 (1973).ADSCrossRefGoogle Scholar
  59. 59.
    K. M. Ervin and P. B. Armentrout, J. Chem. Phys. 86, 6240 (1987).ADSCrossRefGoogle Scholar
  60. 60.
    F. Busch and G. H. Dunn, Phys. Rev. A 5, 1726 (1972).ADSCrossRefGoogle Scholar
  61. 61.
    C. L. Liao, C. X. Liao, and C. Y. Ng, J. Chem. Phys. 81, 5672 (1984).ADSCrossRefGoogle Scholar
  62. 62.
    C. L. Liao and C. Y. Ng, J. Chem. Phys. 84, 197 (1986).ADSCrossRefGoogle Scholar
  63. 63.
    F. M. Campbell, R. Browning, and C. J. Latimer, J. Phys. B 14, 3493 (1981).ADSCrossRefGoogle Scholar
  64. 64.
    P. M. Guyon, T. Baer, S. K. Cole, and R. T. Govers, Chem. Phys. 119, 145 (1988).CrossRefGoogle Scholar
  65. 65.
    S. L. Anderson, F. A. Houle, D. Gerlich, and Y. T. Lee, J. Chem Phys. 75, 2153 (1981).ADSCrossRefGoogle Scholar
  66. 66.
    D. van Pijkeren, E. Boltjes, J. van Eck, and A. Niehaus, Chem. Phys. 91, 293 (1984).CrossRefGoogle Scholar
  67. 67.
    J. E. Pollard, L. K. Johnson, D. A. Lichtin, and R. B. Cohen, J. Chem. Phys. 95, 4877 (1991).ADSCrossRefGoogle Scholar
  68. 68.
    W. A. Chupka and M. E. Russell, J. Chem. Phys. 49, 5426 (1968).ADSCrossRefGoogle Scholar
  69. 69.
    W. A. Chupka, J. Berkowitz, and M. E. Russell, in: Book of Abstracts of VIth International Conference on the Physics of Electronic and Atomic Collisions, MIT Press, Cambridge, Massachusetts (1969), p. 71.Google Scholar
  70. 70.
    T. Turner, O. Dutuit, and Y. T. Lee, J. Chem. Phys. 81, 3475 (1984).ADSCrossRefGoogle Scholar
  71. 71.
    T. R. Govers and P. M. Guyon, Chem. Phys. 113, 425 (1987).ADSCrossRefGoogle Scholar
  72. 72.
    R. C. Isler and R. D. Nathan, Phys. Rev. A 6, 1036 (1972).ADSCrossRefGoogle Scholar
  73. 73.
    G. H. Dunn, R. Geballe, and D. Pretzer, Phys. Rev. 128, 2200 (1962).ADSCrossRefGoogle Scholar
  74. 74.
    G. Niedner, M. Noll, J. P. Toennies, and C. Schlier, J. Chem. Phys. 87, 2685 (1987).ADSCrossRefGoogle Scholar
  75. 75.
    G. Piepke, Diploma Thesis, University of Freiburg, 1980.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • F. Linder
    • 1
  • R. K. Janev
    • 2
  • J. Botero
    • 2
  1. 1.Department of PhysicsUniversity of KaiserslauternKaiserslauternGermany
  2. 2.International Atomic Energy AgencyViennaAustria

Personalised recommendations