Elastic and Related Cross Sections for Low-Energy Collisions among Hydrogen and Helium Ions, Neutrals, and Isotopes

  • D. R. Schultz
  • S. Yu. Ovchinnikov
  • S. V. Passovets

Abstract

In the pursuit of ever more realistic, accurate models and diagnostic methods for fusion energy research, complete data bases of heavy-particle cross sections for excitation, ionization, charge transfer, and recombination have been sought for many years. Great progress has been made along these lines, but the type of reactions and the collision energy range investigated have been dictated primarily by the need to understand the physics of the central core plasma in such magnetically confined plasma devices as tokamaks. Contemporary interest in developing so-called “next-step” experimental reactors, such as ITER (International Thermonuclear Experimental Reactor) has, however, highlighted the need for the study of new atomic and molecular collision regimes. As described in great detail in the present volume and elsewhere, 1 engineering and physics issues are focused on (i) the edge plasma, which must be tailored to suppress the ingress of impurities into the core and to entrain them, and (ii) the divertor, which will be used for hydrogen recycling and heat (power) and particle (impurities, helium ash) exhaust. Because these plasma regimes are characterized by greatly lower temperatures and higher densities than the core, correspondingly different atomic, and even molecular, reactions play crucial roles.

Keywords

Momentum Transfer Total Cross Section Elastic Scattering Differential Cross Section Potential Energy Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. K. Janev, in Review of Fundamental Processes and Applications of Atoms and Ions (C. D. Lin, ed.), World Scientific, Singapore (1993).Google Scholar
  2. 2.
    D. Reiter, in Atomic and Plasma-Material Interaction Processes in Controlled Thermonuclear Fusion (R. K. Janev and H. W. Drawin, eds.), Elsevier, Amsterdam (1993).Google Scholar
  3. 3.
    P. Bachmann and H. J. Belitz, Elastic Processes in Hydrogen-Helium Plasmas: Collision Data, Max Planck Institut für Plamsaphysik, Report IPP 8/2, 1993.Google Scholar
  4. 4.
    M. R. C. McDowell and J. P. Coleman, Introduction to the Theory of Ion-Atom Collisions, North-Holland, Amsterdam (1970).Google Scholar
  5. 5.
    C. J. Joachain, Quantum Collision Theory, North-Holland, Amsterdam (1983).Google Scholar
  6. 6.
    B. H. Bransden and C. J. Joachain, Physics of Atoms and Molecules, Longman, London (1983).Google Scholar
  7. 7.
    E. W. McDaniel, Collision Phenomena in Ionized Gases, John Wiley & Sons, New York (1964);Google Scholar
  8. E. W. McDaniel, Atomic Collisions: Electron and Photon Projectiles, John Wiley & Sons, New York (1989);Google Scholar
  9. E. W. McDaniel, Atomic Collisions: Heavy Particle Projectiles, John Wiley & Sons, New York (1993).Google Scholar
  10. 8.
    E. A. Mason, J. T. Vanderslice, and C. J. G. Raw, J. Chem. Phys. 40, 2153 (1964).ADSCrossRefGoogle Scholar
  11. 9.
    E. Everhart, G. Stone, and R. J. Carbone, Phys. Rev. 99, 1287 (1955);ADSMATHCrossRefGoogle Scholar
  12. 9a.
    G. H. Lane and E. Everhart, Phys. Rev. 117, 920 (1960).ADSCrossRefGoogle Scholar
  13. 10.
    H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Massachusetts (1980).MATHGoogle Scholar
  14. 11.
    R. K. Janev and J. J. Smith, in Atomic and Plasma-Material Interaction Data for Fusion (Nucl. Fusion, Supplement) 4, 1 (1993).ADSGoogle Scholar
  15. 12.
    K. W. Ford and J. A. Wheeler, Ann. Phys. (N. Y.) 7, 259 (1959).MathSciNetADSMATHCrossRefGoogle Scholar
  16. 13.
    N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, Clarendon Press, Oxford (1965).Google Scholar
  17. 14.
    M.S. Child, Molecular Collision Theory, Academic Press, New York (1974).Google Scholar
  18. 15.
    E. E. Nikitin and S. Ya. Umanskii, Theory of Slow Atomic Collisions, Springer-Verlag, Berlin (1984).CrossRefGoogle Scholar
  19. 16.
    H. S. W. Massey and C. B. O. Mohr, Proc. R. Soc. London, Sen A 144, 188 (1934).ADSCrossRefGoogle Scholar
  20. 17.
    A. Dalgarno and M. R. C. McDowell, Proc. Phys. Soc. London Sect. A 69, 615 (1956).ADSCrossRefGoogle Scholar
  21. 18.
    A. Dalgarno, M. R. C. McDowell, and A. Williams, Phil. Trans. R. Soc. London Ser. A 250, 411 (1958);ADSMATHCrossRefGoogle Scholar
  22. A. Dalgarno, M. R. C. McDowell, and A. Williams, Phil. Trans. R. Soc. London Ser. A 250, 426 (1958).ADSMATHCrossRefGoogle Scholar
  23. 19.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley & Sons, New York (1964).Google Scholar
  24. 20.
    S. Yu. Ovchinnikov and E. A. Solov’ev, Comments At. Mol. Phys. 22, 69 (1988).Google Scholar
  25. 21.
    R. J. Damburg and R. Kh. Propin, J. Phys. B 1, 681 (1968).ADSCrossRefGoogle Scholar
  26. 22.
    J. H. Macek and K. A. Jerjian, Phys. Rev. A 33, 233 (1986); J. H. Macek and A. Ovchinnikova, private communication.ADSCrossRefGoogle Scholar
  27. 23.
    G. Hunter and M. Kuriyan, Proc. R. Soc. London Ser. A 353, 575 (1977).ADSCrossRefGoogle Scholar
  28. 24.
    G. Hunter and M. Kuriyan, At. Data Nucl. Data Tables 25, 287 (1980).ADSCrossRefGoogle Scholar
  29. 25.
    G. Hunter and M. Kuriyan, Proc. R. Soc. London Ser. A 358, 321 (1977).ADSGoogle Scholar
  30. 26.
    R. R. Hodges and E. L. Breig, J. Geophys. Res. 95, 7697 (1991).ADSCrossRefGoogle Scholar
  31. 27.
    J. M. Wadehra, Phys. Rev. A 20, 1859 (1979).ADSCrossRefGoogle Scholar
  32. 28.
    J. M. Peek, J. Chem. Phys. 43, 3004 (1965).ADSCrossRefGoogle Scholar
  33. 29.
    M. J. Jamieson, A. Dalgarno, and J. N. Yukich, Phys. Rev. A 46, 6956 (1992);ADSCrossRefGoogle Scholar
  34. 29a.
    see also the comment in E. Tiesinga, Phys. Rev. A 48, 4801 (1993).ADSCrossRefGoogle Scholar
  35. 30.
    N. Koyama and J. C. Baird, J. Phys. Soc. Jpn. 55, 801 (1986).ADSCrossRefGoogle Scholar
  36. 31.
    M. R. Flannery and K. J. McCann, Phys. Rev. A 9, 1947 (1974).ADSCrossRefGoogle Scholar
  37. 32.
    J. P. Toennies, W. Welz, and G. Wolf, Chem. Phys. Lett. 44, 5 (1976).ADSCrossRefGoogle Scholar
  38. 33.
    R. Gayet, R. McCarroll, and P. Valiron, Chem. Phys. Lett. 58, 501 (1978).ADSCrossRefGoogle Scholar
  39. 34.
    A. Bhattacharya and J. B. Anderson, Phys. Rev. A 49, 2441 (1994).ADSCrossRefGoogle Scholar
  40. 35.
    G. H. Gillespie, Phys. Rev. A 17, 1284 (1978).ADSCrossRefGoogle Scholar
  41. 36.
    A. V. Phelps, J. Phys. Chem. Ref. Data 19, 653 (1990);ADSCrossRefGoogle Scholar
  42. 36a.
    A. V. Phelps, Erratum, J. Phys. Chem. Ref. Data 20, 1339 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • D. R. Schultz
    • 1
  • S. Yu. Ovchinnikov
    • 2
  • S. V. Passovets
    • 2
  1. 1.Physics DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Department of Physics and AstronomyUniversity of TennesseeKnoxvilleUSA

Personalised recommendations