Abstract
It is well established that high levels of plasma cholesterol, particularly those associated with low-density lipoprotein (LDL), increase the risk of developing atherosclerosis. It is also clear that lowering plasma cholesterol levels can arrest or even reverse the progression of the disease [1,2].
Keywords
Foam Cell Cholesterol Ester Scavenger Receptor Macrophage Scavenger Receptor Fatty Streak Lesion
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Lowering blood cholesterol to prevent heart disease. JAMA 1985, 253: 2080–2086.Google Scholar
- 2.Tyroler H: Lowering plasma cholesterol levels decreases risk of coronary heart disease: an overview of clinical trials. In Hypercholesterolemia and Atherosclerosis. Edited by Steinberg D, Olefsky JM. New York: Churchill Livingstone, 1987: 99–116.Google Scholar
- 3.Havel RJ: The role of liver in atherogenesis. Arteriosclerosis 1985, 2: 569–575.Google Scholar
- 4.Krauss RM: The tangled web of coronary risk factors. Am J Med 1990, 2 (suppl A): 36–41.Google Scholar
- 5.Krauss RM: Dense low density lipoproteins and coronary artery disease [review]. Am J Cardiol 1995, 75 (suppl B): 53–75.CrossRefGoogle Scholar
- 6.Veniant MM, Pierotti V, Newland D, et al.: Susceptibility to athero-sclerosis in mice expressing exclusively apolipoprotein B48 or apolipoprotein B100. J Clin Invest 1997, 100: 180–188.PubMedCrossRefGoogle Scholar
- 7.Pittman RC, Carew TE, Attie AD, et al.: Receptor-dependent and receptor-independent degradation of low density lipoprotein in normal and in receptor-deficient mutant rabbits. J Biol Chem 1982, 257: 7994–8000.PubMedGoogle Scholar
- 8.Brown MS, Goldstein JL: A receptor-mediated pathway for choles-terol homeostasis. Science 1986, 232: 34 47.Google Scholar
- 9.Wang X, Briggs MR, Hua X, et al.: Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. II. Purification and characterization. J Biol Chem 1993, 268: 14497–14504.PubMedGoogle Scholar
- 10.Yang J, Sato R, Goldstein JL, et al.: Sterol-resistant transcription in Cho 61b caused by gene rearrangement that truncates SREBP-2. Genes Dev 1994, 8: 1910–1919.PubMedCrossRefGoogle Scholar
- 11.Ishibashi S, Brown MS, Goldstein JL, et al.: Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 1993, 92: 883–893.PubMedCrossRefGoogle Scholar
- 12.Scanu AM: Lipoprotein(a): its inheritance and molecular basis of its atherothrombotic role. Mol Cell Biochem 1992, 113: 127–131.PubMedCrossRefGoogle Scholar
- 13.Scanu AM, Fless GM: Lipoprotein(a): heterogeneity and biological relevance. J Clin Invest 1990, 85: 1709–1715.PubMedCrossRefGoogle Scholar
- 14.Gugliucci Creriche A, Stahl AJ: Glycation and oxidation of human low density lipoproteins reduces heparin binding and modifies charge. Scand J Clin Lab Invest 1993, 53: 125–132.CrossRefGoogle Scholar
- 15.Steinberg D, Parthasarathy S, Carew TE, et al.: Beyond cholesterol. Modifications of low-density lipoprotein that increase its athero-genicity. N Engl J Med 1989, 320: 915–924.PubMedCrossRefGoogle Scholar
- 16.Parthasarathy S: Modified Lipoproteins in the Pathogenesis of Atherosclerosis. Austin, TX: RG Landes Publishers, CRC Press Inc; 1994.Google Scholar
- 17.Steinbrecher UP: Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem 1987, 262: 3603–3608.PubMedGoogle Scholar
- 18.Gerrity RG: The role of the monocyte in atherogenesis. Am J Pathol 1981, 103: 181–190.PubMedGoogle Scholar
- 19.Goldstein JL, Ho YK, Basu SK, et al.: Binding site on macrophages that mediates uptake and degradation of cetylated low density lipoproteins, producing massive cholesterol deposition. Proc Natl Acad Sci USA 1979, 76: 333–337.PubMedCrossRefGoogle Scholar
- 20.Haberland ME, Fogelman AM, Edwards PA: Specificity of receptor-mediated recognition of malondialdehyde-modified low density lipoproteins. Proc Natl Acad Sci USA 1982, 79: 1712–1716.PubMedCrossRefGoogle Scholar
- 21.Brown MS, Goldstein JL: Atherosclerosis. Scavenging for receptors [news]. Nature 1990, 343: 508–509.PubMedCrossRefGoogle Scholar
- 22.Kodama T, Freeman M, Rohrer L, et al.: Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 1990, 343: 531–535.PubMedCrossRefGoogle Scholar
- 23.Takahashi K, Naito M, Kodama T, et al.: Expression of macrophage scavenger receptors in various human tissues and atherosclerotic lesions. Clin Biochem 1992, 25: 365–368.PubMedCrossRefGoogle Scholar
- 24.Yla Herttuala S, Rosenfeld MR, Parthasarathy S, et al.: Gene expres-sion in macrophage-rich human atherosclerotic lesions. 15-lipoxy-genase and acetyl low density lipoprotein receptor messenger RNA colocalize with oxidation specific lipid-protein adducts. J Clin Invest 1991, 87: 1146–1152.CrossRefGoogle Scholar
- 25.Sakaguchi H, Takeya M, Suzuki H, et al.: Role of macrophage scav-enger receptor in diet-induced atherosclerosis in mice. Lab Invest 1998, 78: 423–434.PubMedGoogle Scholar
- 26.Parthasarathy S, Steinberg D, Witztum JL: The role of oxidized low-density lipoproteins in the pathogenesis of atherosclerosis. Annu Rev Med 1992, 43: 219–225.PubMedCrossRefGoogle Scholar
- 27.Cushing SD, Berliner JA, Valente AJ, et al.: Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 1990, 87: 5134–5138.PubMedCrossRefGoogle Scholar
- 28.Ku G, Thomas CE, Akeson AL, et al.: Induction of interleukin 1 ß expression from human peripheral blood monocyte-derived macrophages by 9-hydroxyoctadecadienoic acid. J Biol Chem 1992, 267: 14183–14188.PubMedGoogle Scholar
- 29.Carew TE, Schwenke DC, Steinberg D: Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progres-sion of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA 1987, 84: 7725–7729.PubMedCrossRefGoogle Scholar
- 30.Sparrow Cl’, Doebber TW, Olszewski J, et al.: Low density lipopro-tein is protected from oxidation and the progression of atheroscle-rosis is slowed in cholesterol-fed rabbits by the antioxidant N,N’-diphenyl-phenylenediamine. J Clin Invest 1992, 89: 1885–1891.CrossRefGoogle Scholar
- 31.Verlangieri AJ, Bush MJ: Effects of d-alpha-tocopherol supplemen-tation on experimentally induced primate atherosclerosis. J Am Coll Nutr 1992, 11: 131–138.PubMedGoogle Scholar
- 32.Kita T, Nagano Y, Yokode M, et al.: Prevention of atherosclerotic progression in Watanabe rabbits by probucol. Am J Cardiol 1988, 62 (suppl B): 13–19.CrossRefGoogle Scholar
- 33.Gaziano JM, Manson JE, Buring JE, et al.: Dietary antioxidants and cardiovascular disease. Ann NY Acad Sci 1992, 669: 249–258.PubMedCrossRefGoogle Scholar
- 34.Gey KF, Puska P: Plasma vitamins E and A inversely correlated to mortality from ischemic heart disease in cross-cultural epidemi-ology. Ann NY Acad Sci 1989, 570: 268–282.Google Scholar
- 35.Stephens NG, Parsons A, Schofield PM, et al.: Randomized controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996, 347 (suppl A): 781–786.Google Scholar
- 36.Shern-Brewer R, Santanam N, Wetzstein C, et al.: Exercise and cardiovascular disease: a new perspective. Arteriosclerosis Thromb Vasc Biol 1998, 18: 1181–1187.CrossRefGoogle Scholar
- 37.Santanam N, Shern-Brewer R, McClatchey R, et al.: Estradiol as an antioxidant: incompatible with its physiological concentrations and function. J Lipid Research 1998, 39: 2111–2118.Google Scholar
- 38.Ramasamy S, Parthasarathy S, Harrison DG: Regulation of endothelial nitric oxide synthase gene expression by oxidized linoleic acid. J Lipid Res 1998, 39; 268–276.PubMedGoogle Scholar
- 39.Palinski WS, Miller E, Wiztum JL: Immunization of LDL receptor deficient rabbits with homologous malondialdehyde-modified reduces atherogenesis. Proc Natl Acad Sci USA 1995, 92: 821–825.PubMedCrossRefGoogle Scholar
- 40.Yang C, Gu Z, Weng S, et al.: Structure of apolipoprotein B-100 of human low density proteins. Arteriosclerosis 1989, 9: 96–108.PubMedCrossRefGoogle Scholar
- 41.Briggs MR, Yokoyama C, Wang X, et al.: Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. I. Identification of the protein and delineation of its target nucleotide sequence. J Biol Chem 1993, 268: 14490–14496.PubMedGoogle Scholar
- 42.Goldstein JL, Brown MS, Anderson RG, et al.: Receptor-mediated endocytosis: concepts emerging from the LDL receptor system [review]. Annu Rev Cell Biol 1985, 1: 1–39.PubMedCrossRefGoogle Scholar
- 43.Grundy SM: Cholesterol and Atherosclerosis: Diagnosis and Treatment. Philadelphia: JB Lippincott; 1990.Google Scholar
- 44.Austin MA, Hokanson JE: Epidemiology of triglycerides, small dense low-density lipoprotein, and lipoprotein(a) as risk factors for coronary heart disease [review]. Med Clin North Am 1994, 78: 99–115.PubMedGoogle Scholar
- 45.Callow MJ, Stoltzfus LJ, Lawn RM, et al.: Expression of human apolipoprotein B and assembly of lipoprotein(a) in transgenic mice. Proc Natl Acad Sci USA 1994, 91: 2130–2134.PubMedCrossRefGoogle Scholar
- 46.Rosenfeld ME, Khoo JC, Miller E, et al.: Macrophage-derived foam cells freshly isolated from rabbit atherosclerotic lesions degrade modified lipoproteins, promote oxidation of low-density lipoproteins, and contain oxidation-specific lipid-protein adducts. I Clin Invest 1991, 87: 90–99.CrossRefGoogle Scholar
- 47.Parthasarathy S, Santanam S, Auge N: Antioxidants and Low density Lipoprotein Oxidation. In Antioxidant Status, Diet, Nutrition, and Health. Edited by Papas A. Boca Raton, FL: CRC Press; 1999: 347–369.Google Scholar
- 48.Santanam N, Parthasarathy S: Paradoxical actions of antioxidants in the oxidation of low-density lipoprotein by peroxidases. J Clin Invest 1995, 95: 2594–2600.PubMedCrossRefGoogle Scholar
- 49.Esterbauer H, Striegl G, Puhl H, et al.: Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Commun 1989, 6: 67–75.PubMedCrossRefGoogle Scholar
- 50.Steinberg D: Metabolism of lipoproteins and their role in atheroge-nesis. Atheroscler Rev 1988, 18: 1–23.Google Scholar
- 51.Quinn MT, Parthasarathy S, Steinberg D, et al.: Oxidatively modi-fied low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci USA 1987, 84: 2995–2998.PubMedCrossRefGoogle Scholar
- 52.Parthasarathy S, Rankin SM: Role of oxidized low density lipopro-tein in atherogenesis. Prog Lipid Res 1992, 31: 127–143.PubMedCrossRefGoogle Scholar
- 53.Palinski W, Rosenfeld ME, Yla Herttuala S, et al.: Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989, 86: 1372–1376.PubMedCrossRefGoogle Scholar
- 54.Rohrer L, Freeman M, Kodama T, et al.: Coiled-coil fibrous domains mediate ligand binding by scavenger receptor type II. Nature 1990, 343: 570–572.PubMedCrossRefGoogle Scholar
- 55.Fogelman AM, Haberland ME, Seager J, et al.: Factors regulating the activities of the low density lipoprotein receptor and the scav-enger receptor on human monocyte-macrophages. J Lipid Res 1981, 22: 1131–1141.PubMedGoogle Scholar
Copyright information
© Springer Science+Business Media New York 2000