Skip to main content

Histopathology of Arteriosclerosis

  • Chapter
Book cover Atlas of Atherosclerosis

Abstract

Both denuding and nondenuding endothelial injury have been proposed as pathogenetic mechanisms in atherogenesis. Conversion of a nondenuding injury to a denuding one, however, is not considered to be a rare event. Although both mechanisms initiate different molecular pathways, they ultimately lead to 1) proliferation of smooth muscle cells; 2) synthesis of connective tissue matrix; 3) focal accumulation of monocytes/macrophages; 4) lymphocytic infiltration; and 5) variable intracellular and extra-cellular lipid accumulation and eventually stenotic lesions [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilcox JN, Harker LA: Molecular and cellular mechanisms of atherogenesis: studies of human lesions linked with animal modeling. In Haemostasis and Thrombosis, edn 3, vol 2. Edited by Bloom AL, Forbes CD, Thomas DP, et al. Edinburgh: Churchill Livingstone; 1993, 1139–1152.

    Google Scholar 

  2. Cybulsky MI, Gimbrone MA: Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 1991, 251: 788–791.

    Article  PubMed  CAS  Google Scholar 

  3. Celermajer DS: Endothelial dysfunction: does it matter? is it reversible? J AmColl Cardiol 1997, 30: 325–333.

    Article  CAS  Google Scholar 

  4. Bar Shavit R, Benezra M, Sabbah V, et al.: Thrombin as a multifunctional protein: induction of cell adhesion and proliferation. Am J Respir Cell Mol Bio1 1992; 6:123–130.

    Google Scholar 

  5. Shultz PJ, Knauss TC, Mene P, et al.: Mitogenic signals for thrombin in mesangial cells: regulation of phospholipase C and PDGF genes. Am J Physiol 1989, 257(suppl F):366–374.

    Google Scholar 

  6. Zhang Y, Cliff WJ, Schoefl GI, et al.: Plasma protein insudation as an index of early coronary atherogenesis. Am J Pathol 1993, 143:496–505.

    Google Scholar 

  7. Evanko SP, Raines EW, Ross R, et al.: Proteoglycan distribution in lesions of atherosclerosis depends on lesion severity, structural characteristics, and the proximity of platelet-derived growth factor and transforming growth factor-ß. Am J Pathol 1998, 152:533–546.

    Google Scholar 

  8. McEvoy LM, Sun H, Tsao PS, et al.: Novel vascular molecule involved in monocyte adhesion to aortic endothelium in models of atherogenesis. J Exp Med 1997, 185:2069–2077.

    Google Scholar 

  9. McGill HC Jr: Persistent problems in the pathogenesis of atherosclerosis. Arteriosclerosis 1984, 4: 443–451.

    Article  PubMed  Google Scholar 

  10. Tracy RE, Kissling GE: Age and fibroplasia as preconditions for atheronecrosis in human coronary arteries. Arch Pathol Lab Med 1987, 111: 957–963.

    PubMed  CAS  Google Scholar 

  11. Van Der Wal AC, Das PK, Van Der Berg DB, et al.: Atherosclerotic lesions in humans: in situ immunophenotypic analysis suggesting an immune-mediated response. Lab Invest 1989, 61:166–170.

    Google Scholar 

  12. Wilcox JN: Analysis of local gene expression in human atherosclerotic plaques by in situ hybridization. Trends Cardiovasc Med 1991, 1: 17–24.

    Article  PubMed  CAS  Google Scholar 

  13. Wilcox JN, Smith KM, Williams LT, et al.: Platelet derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization. J Clin Invest 1988, 82:1134–1143.

    Google Scholar 

  14. Ross R: The pathogenesis of atherosclerosis: a perspective for the 1990’s. Nature 1993, 362: 801–809.

    Article  PubMed  CAS  Google Scholar 

  15. Gerrity RG, Goss JA, Soby L: Control of monocyte recruitment by chemotactic factor(s) in lesion-prone areas of swine aorta. Atherosclerosis 1985, 5: 55–66.

    CAS  Google Scholar 

  16. Rose R: Atherosclerosis: a defence mechanism gone awry. Am J Pathol 1993, 143: 987–1002.

    Google Scholar 

  17. Fuster V, Badimon JJ, Badimon L: Clinical-pathological correlations of coronary disease progression and regression. Circulation 1992, 86 (suppl 6): 1–11.

    Google Scholar 

  18. Richardson PD, Davies MS, Born GVR: Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989, 2: 941–944.

    Article  PubMed  CAS  Google Scholar 

  19. Bini A, Fenoglio JJ Jr, Mesa-Tejada R, et al.: Identification and distribution of fibrinogen, fibrin and fibrin(ogen) degradation products in atherosclerosis: use of monoclonal antibodies. Arteriosclerosis 1989, 9:109–121.

    Google Scholar 

  20. Lendon C, Davies M, Born G, et al.: Atherosclerotic plaque caps are locally weakened when macrophage density is increased. Atherosclerosis 1991, 65:302–310.

    Google Scholar 

  21. Amento EP, Ehsani N, Palmer H, et al.: Cytokines positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 1991, 11:1223–1230.

    Google Scholar 

  22. Libby P: Molecular bases of the acute coronary syndromes. Circulation 1995, 91: 2844–2850.

    Article  PubMed  CAS  Google Scholar 

  23. Kovanen PT, Koaartinen M, Paavonen T: Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 1995, 92: 1084–1088.

    Article  PubMed  CAS  Google Scholar 

  24. Nissen S, Gurley J, Booth D, et al.: Differences in ultrasound plaque morphology in stable and unstable patients [abstract]. Circulation 1991, 84:436.

    Google Scholar 

  25. Davies MJ, Richardson PD, Woolf N, et al.: Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophages and smooth muscle cell content. Br Heart J 1993, 69:377–381.

    Google Scholar 

  26. Zhang Y, Cliff WJ, Shoefl GI, et al.: Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol 1993, 43:164–172.

    Google Scholar 

  27. Nicosia RF, Lin YJ, Hazelton D, et al.: Endogenous regulation of angiogenesis in the rat aorta model: role of vascular endothelial growth factor. Am J Pathol 1997, 151:1379–1386.

    Google Scholar 

  28. Demer LL: A skeleton in the atherosclerosis closet. Circulation 1995, 92: 2029–2032.

    Article  PubMed  CAS  Google Scholar 

  29. Hirota S, Imakita M, Kohri K, et al.: Expression of osteopontin messenger RNA by macrophages in atherosclerotic plaques. Am J Pathol 1993,143:1003–1008.

    Google Scholar 

  30. Demer LL: Lipid hypothesis of cardiovascular calcification. Circulation 1997, 95: 297–298.

    Article  PubMed  CAS  Google Scholar 

  31. Guyton JR, Klemp KF: The lipid-rich core region of human athero- sclerotic fibrous plaques: prevalence of small lipid droplets and vesicles by electron microscopy. Am J Pathol 1989, 134: 705–717.

    PubMed  CAS  Google Scholar 

  32. Podet EJ, Shaffer DR, Gianturco SH, et al.: Interaction of low density lipoproteins with human aortic elastin. Arterioscler Thromb 1991, 1:11:116.

    Google Scholar 

  33. Falk E: Why do plaques rupture? Circulation 1992, 86 (suppl III): 30–42.

    Google Scholar 

  34. Theroux P, Foster V: Acute coronary syndromes: unstable angina and non-Q-wave myocardial infarction. Circulation 1998, 97: 1195–1206.

    Article  PubMed  CAS  Google Scholar 

  35. Stary HC: The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life. Eur Heart J 1990, 11 (suppl E): 3–19.

    Article  PubMed  Google Scholar 

  36. Davies MJ: Stability and instability: two faces of coronary atherosclerosis. Circulation 1996, 94: 2013–2020.

    Article  PubMed  CAS  Google Scholar 

  37. Lewis LC, Bennet-Cain AL, DeMars CS, et al.: Procoagulant activity after exposure of monocyte-derived macrophages to minimally oxidized low density lipoprotein. Am J Pathol 1995, 147:1029–1040.

    Google Scholar 

  38. Shah PK, Falk E, Badimon JJ, et al.: Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques: potential role of matrix-degrading metalloproteinases and implication for plaque rupture. Circulation 1995, 92:1565–1569.

    Google Scholar 

  39. Badimon L, Chesebro JH, Badimon JJ: Thrombus formation on ruptured atherosclerotic plaques and rethrombosis on evolving thrombi. Circulation 1992, 86 (suppl 6): 74–85.

    Google Scholar 

  40. Nachman RL: Lipoprotein (alpha): molecular mischief in the microvasculature. Circulation 1997, 96: 2485–2487.

    PubMed  CAS  Google Scholar 

  41. Schachinger V, Halle M, Minners J, et al.: Lipoprotein (alpha) selectively impairs receptor-mediated endothelial vasodilator function of the human coronary circulation. J Am Cell Cardiol 1997, 30:927–934.

    Google Scholar 

  42. Lopez-Candales A, Holmes, DR, Liao S, et al.: Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol 1997, 150:993–1007.

    Google Scholar 

  43. Loscalzo J, Weinfeld M, Fless GM, et al.: Lipoprotein (alpha), fibrin binding, and plasminogen activation. Arteriosclerosis 1990, 10:240–245.

    Google Scholar 

  44. Koch AE, Kunkel SL, Pearce WH, et al.: Enhanced production of the chemotactic cytokines interleukin-8, and monocyte chemoattractant protein-1 in human abdominal aortic aneurysms. Am J Pathol 1993, 142:1423–1431.

    Google Scholar 

  45. Hanson GK, Jonasson S, Seifert PS, et al.: Immune mechanisms in atherosclerosis. Arteriosclerosis 1989, 9:567–578.

    Google Scholar 

  46. Koch AE, Haines K, Rizzo RJ, et al.: Human abdominal aortic aneurysms: immunophenotypic analysis suggesting an immune-mediated response. Am J Pathol 1990, 137: 1199–1213.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gravanis, M.B. (2000). Histopathology of Arteriosclerosis. In: Wilson, P.W.F. (eds) Atlas of Atherosclerosis. Current Medicine Group, London. https://doi.org/10.1007/978-1-4757-9310-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9310-9_1

  • Publisher Name: Current Medicine Group, London

  • Print ISBN: 978-1-4757-9312-3

  • Online ISBN: 978-1-4757-9310-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics