Colloidal Properties of Asphaltenes in Organic Solvents

  • Eric Y. Sheu
  • David A. Storm


Asphaltene is a component of the petroleum liquids defined operationally. It represents the most refractory (or the heaviest) fraction. A generally accepted definition of asphaltenes is by their solvent solubility. The fraction insoluble in heptane (or pentane) but soluble in toluene is called asphaltene [1]. This fraction usually has high apparent molecular weight (often measured by vapor pressure osmometry, VPO). Because it is very refractory, asphaltenes cannot be refined with currently technology. Thus, in many vacuum residua, asphaltene is the main component. In addition to the non-refinerable nature, asphaltene has been known to initiate wellbore plugging, pipeline deposition; hinder the refining yields, and initiate coking, et cetera. Such hinderance on production and processing have made asphaltene one of the most focused materials in petroleum research. The ultimate goal is to either separate asphaltene from the petroleum liquids before entering the refining processes or “upgrade” it to a less refractory (or lighter) fraction. For both cases, one needs to understand the fundamental chemistry of asphaltene.


Critical miceBar Concentration Small Angle Neutron Scattering Dynamic Surface Tension Colloidal Property Unit Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. P. Pfeiffer, The Properties of Asphaltic Bitumen. Elsevier, Amsterdam, 285 pp. (1950); J. G. Speight, The chemistry and Technology of Petroleum. Marcel Dekker, New York, (1980); J. G. Speight, Fuel Science and Technology Handbook. Marcel Dekker, New York 1193 pp (1990).Google Scholar
  2. 2.
    T. F. Yen, Am. Chem. Soc., Div Petrol. Chem. Preprint, 17 (1): 102–104 (1972); T.F. Yen, Energy Source, 1(4): 447–463 (1974); T.F. Yen, The role of asphaltene in heavy crude and tar sands. In: R.F. Meyer and C.T. Steele (Editors), The Future of Heavy Crude and Tar Sands, McGraw-Hill, New York, pp 174–179 (1980); J.W. Bunger and N.C. Li, Chemistry ofAsphaltenes. Advances in Chemistry Series 195. American Chemical Society, Washington D.C. (1981); T.F. Yen and G.V. Chilingarian (editor) Asphaltenes and Asphalts, 1, Elservier, Amsterdam (1994); M.K. Sharma and T.F. Yen (editors) Asphaltene Particles in Fossil Fuel Exploration, Recovery, Refining, and Production Processes, Plenum Press, New York (1994).Google Scholar
  3. 3.
    F.J. Nellenstcyn, Chem. Weekblad, 28, 313 (1931); F. J. Nellensteyn and N. M. Roodenburg, Chem.-Zeiyung, 545, 819 (1930).Google Scholar
  4. 4.
    C. Mack, Phvs. Chem., 36. 2901 (1932).Google Scholar
  5. 5.
    J. P. Pfeiffer and R. N. J. Saal, J. Phys. Chem., 44. 139 (1940).Google Scholar
  6. 6.
    M. J. Rosen, Surfactants and Interfacial Phenomena, 2nd ed., John Wiley and Sons, New York (1988).Google Scholar
  7. 7.
    E. Y. Sheu, M. M. De Tar, D. A. Storm. and S. J. DeCanio, Fuel, 71, 299 (1992).CrossRefGoogle Scholar
  8. 8.
    S. I. Anderson and K. S. Birdi, J. Coll. Int. Sci., 142, 497 (1991).CrossRefGoogle Scholar
  9. 9.
    J.P. Dickie and T.F. Yen, Anal. Chem., 39(14) 1487–1852 (1972); T.F. Yen, Adv. Chem. Ser., 195: 39–51 (1981).Google Scholar
  10. 10.
    Marusk H. P., and Rao, B. M. L., Fuel Sci. and Tech. Int., 5 (2) 119 (1987).CrossRefGoogle Scholar
  11. 11.
    B. Shiffert, J. Kuczinski. and E. J. Papirer, J. Coll. Int. Sci., 135, 107 (1990).CrossRefGoogle Scholar
  12. 12.
    E.Y. Sheu, M.M. De Tar and D.A. Storm, Surface activity and dynamics of asphaltenes, In: M.K. Sharma and T.F. Yen (editors) Asphaltene Particles in Fossil Fuel Exploration, Recovery, Refining, and Production Processes, 115 pp, Plenum Press, New York (1994).Google Scholar
  13. 13.
    S.E. Taylor, Fuel, 71, 1338 (1992).CrossRefGoogle Scholar
  14. 14.
    E.Y. Sheu and D.A. Storm, Fuel, 73. 1368 (1994).CrossRefGoogle Scholar
  15. 15.
    E.Y. Sheu, M.M. De Tar and D.A. Storm, Fuel 70, 1151 (1991); E.Y. Sheu, M.M. De Tar, and D.A. Storm, Fuel Sci. Technolo. Int., 10 (4–6), 607–647 (1992).Google Scholar
  16. 16.
    J. Hunt, unpublished data (private communication).Google Scholar
  17. 17.
    R. Pal and E. Rhodes, J. Rheology, 33, 1021 (1989).CrossRefGoogle Scholar
  18. 18.
    H. Eiler, Kolloid-Z Z. Polvm., 97, 313 (1941).Google Scholar
  19. 19.
    G.A. Campbell and G. Forgacs, Phys. Rev. A, 41, 8 (1990).Google Scholar
  20. 20.
    M.J. Grimson and G. C. Barker, Europhys. Lett., 3, 511 (1987).CrossRefGoogle Scholar
  21. 21.
    S.P. Das and G.F. Masenko, Phys. Rev. Lett., 54, 118 (1985).CrossRefGoogle Scholar
  22. 22.
    E. Y. Sheu, Phvs. Rev. A., 45, 2428 (1992).CrossRefGoogle Scholar
  23. 23.
    L. A. Feigin and D. I. Svergun, Structure Analysis By Small Angle X-ray and Neutron Scattering, Plenum Press, New York (1987).Google Scholar
  24. 24.
    L. S. Ornstein and F. Zernike, Proc. Akad. Sci., 17, 793 (1914).Google Scholar
  25. 25.
    J. K. Percus and G. J. Yeciv, Phys. Rev., 110, 1 (1958).CrossRefGoogle Scholar
  26. 26.
    J. B. Haytcr and J. Penfold, J. Chem. Soc. Faraday Trans. 1, 77, 1851 (1981).Google Scholar
  27. 27.
    R. J. Baxter, J. Chem. Phys., 52, 4559 (1970).CrossRefGoogle Scholar
  28. 28.
    L. Blum and J. S. Hoye, J. Phys. Chem., 81, 131 1 (1977).Google Scholar
  29. 29.
    E.Y. Sheu, K.S. Liang, S.K. Sinha, and R.E. Overfield, J. Coll. Int. Sci., 153, 399 (1992).CrossRefGoogle Scholar
  30. 30.
    S. H. Chen and J. Teixeira. Phys. Rev. Lett., 57, 2583 (1985).CrossRefGoogle Scholar
  31. 31.
    D. Stauffer, in On Growth and Form, edited by H. E. Stanley and N. Ostrowsky, Martinus Nijhoff Publisher, New York (1986).Google Scholar
  32. 32.
    H. E. Stanley and N. Ostrowsky eds, On Growth and Form, Martinus Nijhoff Publisher, New York (1986).Google Scholar
  33. 33.
    D. P. Landau and F. Family, Eds.. Kinetics of Aggregation and Gelation, North Holland, Amsterdam, (1984).Google Scholar
  34. 34.
    R. Pynn and A. Skeltorp, Eds. Scaling Phenomena in Disordered System, Plenum New York (1986).Google Scholar
  35. 35.
    J. Feder, Fractal, Plenum, New York (1988).Google Scholar
  36. 36.
    S. H. Chen, J. Rouch and P. Tartaglia, Croatica Chemica Acta, 65(2) 353 (1992).Google Scholar
  37. 37.
    P. Raghunathan, Fractal dimension in polymeric amorphous materials determined by electron spin relaxation measurements: A study of asphaltene polymers. In. C. L. Khetrapal and G. Govil (Editors), Magnetic Resonance, page 324–332, Narosa Publishing House, New Delhi, India (1991);P. Raghunathan, Chem. Phys. Lett., 182, 331 (1991).Google Scholar
  38. 38.
    P. Ekwall, In. Advances in Liquid Crystal; G. H. Brown, Ed., Academic Press, New York 1, (1975).Google Scholar
  39. 39.
    M. Borkovec, J. Chen. Phvs., 91 (19) 6268 (1989).CrossRefGoogle Scholar
  40. 40.
    A. S. Janardhan and G. Mansoori, J Petrol. Sci. Eng., 9, 17 (1993).CrossRefGoogle Scholar
  41. 41.
    E.Y. Sheu, M.M. De Tar, and D.A. Storm, Fuel, 73, 45 (1994).CrossRefGoogle Scholar
  42. 42.
    Cole, K.S., Cole, R.H., J. Chem. Phys., 9 341 (1941)CrossRefGoogle Scholar
  43. 43.
    E.Y. Sheu, D.A. Storm and M.M. De Tar, J. Non-crystal. Sloids, 131–133, 347 (1991).Google Scholar
  44. 44.
    Battacharya, S., Stokes, J.P., Kim, M.W., and Huang, J.S., Phys. Rev Let., 55 (1985) 1884.CrossRefGoogle Scholar
  45. 45.
    Ponton, A., Bose, T. K., and Delbos, G., J. Chem. Phys., 94 (1991) 6879CrossRefGoogle Scholar
  46. 46.
    Storm, D. A., “Temperature Dependent Rheological Study of Vacuum Residue” presented at the Peterson Asphalt Research Conference, the 13th Annual Meeting, Laramie, Wyoming, July 12–14. 1993Google Scholar
  47. 47.
    Vogler, E.A., J. Coll. Int. Sci., 133, 228 (1989).CrossRefGoogle Scholar
  48. 48.
    E.M. Trujillo, Soc. Petro. Eng. AIME, 645, Aug. (1983).Google Scholar
  49. H.A. Nasr-El-Din, B.F. Hawkins and K.A. Green, Preproint, Int. Svmp. on Oilfield and Geothermal Chemistry,Feb. 20–22, Anaheim, CA., paper SPE 21028 (1991).Google Scholar
  50. 50.
    H.A. Nasr-El-Din and K.C. Taylor, Coll. Surfaces, 66, 23 (1990).CrossRefGoogle Scholar
  51. 51.
    E.Y. Sheu, M.B. Shields, and D.A. Storm, Fuel, 73, 1766 (1994).CrossRefGoogle Scholar
  52. 52.
    I.M. Krieger and T.J. Dougherty, Trans. Soc. Rheology 3, 137–152 (1959).CrossRefGoogle Scholar
  53. 53.
    R. C. Ball and P. Richmon, Phys. Chem. Lig., 9, 99 (1980).Google Scholar
  54. 54.
    J. Brady, J. Chem Phys., 99, 569 (1993).CrossRefGoogle Scholar
  55. 55.
    M. Mooney, J. Coll. Int. Sci., 6, 162 (1951).CrossRefGoogle Scholar
  56. 56.
    D. Bedeaux, J Coll. Int. Sci., 118, 80 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Eric Y. Sheu
    • 1
  • David A. Storm
    • 1
  1. 1.Texaco Research and DevelopmentBeaconUSA

Personalised recommendations