On the Superpositions of Mathematical Instantons

  • Andrei Nikolaevic Tjurin
Part of the Progress in Mathematics book series (PM, volume 36)


A mathematical c-instanton is, by definition, a vector bundle F on a projective space P3 = P(T), T = C4, with the following properties.


Modulus Space Vector Bundle Direct Product Projective Space Zariski Open Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Barth W., Irreducibility of the space of mathematical instanton bundles with rank 2 and e2 = 4, Math. Ann. 258, 1981, 81–106.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Barth W., Buick K., Monads and moduli of vector bundles. Manu-scripta Math., 25, 1978, 323–347.zbMATHCrossRefGoogle Scholar
  3. [3]
    Hartshorne R., Stable vector bundles of rank 2 on P3, Math. Ann., 238, 1978, 229–280.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Hartshorne R., Algebraic vector bundles on projective spaces. A problem list. Topology, 18, 1979, 117–128.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Jozefiak T., Lascoux A., Pragacz P. Klassu, determinantnux mnogoobrasij, associirovannux s sirnmetricheskoy i kososimmetricheskoy matricami, Izv. AN SSSR, ser. math., t.45, N3, 1981, 662–673 (in Russian).MathSciNetGoogle Scholar
  6. [6]
    Room T. G., The geometry of determinantal loci, Cambridge University Press, 1938.Google Scholar
  7. [7]
    Tjurin A. N., Struktura mnogoobrazia par kommutirujushin puchkov simmetricheskih matric, Izv. AN SSSR, ser. math., t.46, N2, 1982, 409–430 (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Andrei Nikolaevic Tjurin
    • 1
  1. 1.Steklov Institute of MathematicsMoscowUSSR

Personalised recommendations