Skip to main content

A Crystalline Torelli Theorem for Supersingular K3 Surfaces

  • Chapter
Arithmetic and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 36))

Abstract

I like to argue that crystalline cohomology will play a role in characteristic p analogous to the role of Ilodge theory in characteristic zero. One aspect of this analogy is that the F-crystal structure on crystalline cohomology should reflect deep geometric properties of varieties. This should be especially true of varieties for which the “p-adic part” of their geometry is the most interesting, as seems, often to be true of supersingular varieties in the sense of Shioda [26]. For example, in [19 §6] I proved that supersingular abelian varieties of dimension at least two are determined up to isomorphism by the F-crystal structure (and trace map) on H 1 cris , just as abelian varieties over ℂ are determined by the Ilodge structure on H 1 DR .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artin, M. “The implicit function theorem in algebraic geometry,” Algebraic Geometry (Int. Coll. at Tasta, 1968), Oxford University Press, 1969, pp. 13–34.

    Google Scholar 

  2. Artin, M. “Algebrization of formal moduli, I,” in Global Analysis (Spencer and Iyanaga, eds.), Princeton Math. Studies No. 29, Princeton University Press, 1969.

    Google Scholar 

  3. Artin, M. “Algebrization of formal moduli, II,” Annals of Math. 91, 1970, pp. 88–135.

    Article  MathSciNet  Google Scholar 

  4. Supersingular K3 surfaces,” Ann. Sci. Ecole Norm. Sup. 7, 1974, pp. 543–568.

    Google Scholar 

  5. Berthelot, P. and Ogus, A. “F-crystals and DeRham cohomology, I,” (to appear in Inv. Math.)

    Google Scholar 

  6. Bloch, S., Caber, O., and Kato, K. (to appear).

    Google Scholar 

  7. Burns, D. and Rapoport M. “On the Torelli problem for Kählerian K3 surfaces,” Ann. Sci. Ecole Norm. Sup. 8, 1975, pp. 235–273.

    MathSciNet  MATH  Google Scholar 

  8. Deligne, P. Séminaire de Géométrie Algébrique 41/2, Springer- Verlag LNM 569, 1977.

    Google Scholar 

  9. Grothendieck, A. “Éléments de Géométrie Algébrique, III,” Publ. Math. de l’1.1I.E.S. 11, 1961.

    Google Scholar 

  10. Séminaire de Géométrie Algébrique 1,Springer-Verlag LNM 224, 1971.

    Google Scholar 

  11. Katz, N. “Slope filtration of F-crystals,” Astérisque 63, 1979, pp. 113–164.

    MATH  Google Scholar 

  12. Koblitz, N. “P-adic variation of the zeta function…” Comp. Math. 31, 1975, pp. 119–218.

    MathSciNet  MATH  Google Scholar 

  13. Lang, W. and Nygaard, N. “A short proof of Rudakov Shafarevich theorem,” Math. Ann. 251, 1980, pp. 171–173.

    MATH  Google Scholar 

  14. Matsusaka, T. and Mumford, D. “Two fundamental theorems on deformations of polarized algebraic varieties,” Amer. J. Math. 86, 1964, pp. 668-

    Google Scholar 

  15. Milnor, J. and Stasheff, J. Characteristic Classes, Annals of Math. Study No. 76, Princeton University Press, 1974.

    Google Scholar 

  16. Morrison, D. “Some remarks on the moduli of K3 surfaces,” (to appear).

    Google Scholar 

  17. Nygaard, N. “The Tate conjecture for ordinary K3 surfaces over finite fields,” (to appear in Inv. Math.)

    Google Scholar 

  18. Nygaard, N. “The Torelli theorem for ordinary K3 surfaces over finite fields,” (this volume).

    Google Scholar 

  19. Ogus, A. “Supersingular K3 crystals,” Asterisque 64, 1979, pp. 3–86.

    MathSciNet  MATH  Google Scholar 

  20. Ogus, A. “Hodge cycles and crystalline cohomology,” in Hodge Cycles, Motives and Shimura Varieties, Springer-Verlag LNM 900, 1982, pp. 357–414.

    MathSciNet  Google Scholar 

  21. Piatetski-Shapiro, I. and Shafarevich, I. “A Torelli theorem for surfaces of type K3,” Math. USSR-Izv. 5, 1971, pp. 547–588.

    Article  Google Scholar 

  22. Rudakov, A. and Shafarevich, I. “Inseparable morphisms of algebraic surfaces,” Math. USSR-Izv. 10, 1976, pp. 1205–1237.

    Article  Google Scholar 

  23. Rudakov, A. and Shafarevich, I. “Degeneration of K3 surfaces over fields of finite characteristic,” (preprint).

    Google Scholar 

  24. Rudakov, A. and Shafarevich, I. “K3 surfaces over fields of finite characteristic,” in Modern Problems in Math., Vol. 18, 1981, Itogi Nauk Tekh., Acad. of Sci. USSR [Russian].

    Google Scholar 

  25. Serre, J. P. A Course in Arithmetic, Springer-Verlag, 1973.

    Google Scholar 

  26. Shioda, T. “On unirationality of supersingular varieties,” Math. Ann. 225, 1977, pp. 155–159.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ogus, A. (1983). A Crystalline Torelli Theorem for Supersingular K3 Surfaces. In: Artin, M., Tate, J. (eds) Arithmetic and Geometry. Progress in Mathematics, vol 36. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-9286-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9286-7_14

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3133-8

  • Online ISBN: 978-1-4757-9286-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics