Schubert Varieties and the Variety of Complexes

  • C. Musili
  • Conjeeveram S. Seshadri
Part of the Progress in Mathematics book series (PM, volume 36)

Abstract

De Concini and Strickland [s] have obtained interesting results on the “variety of complexes” (e.g. the Cohen-Macaulay nature of its irreducible components) by introducing certain “standard monomials” in its study (see also Kempf [6] for an earlier study of the variety of complexes and [3] for other references).

Keywords

Exact Sequence Line Bundle Irreducible Component Parabolic Subgroup Schubert Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. C. Chevalley, Sur les décompositions cellulaires de espaces GIB, (unpublished manuscript), 1958.Google Scholar
  2. [2]
    C. DeConcini and V. Lakshmibai, Arithmetic Cohen-Macaulayness and arithmetic normality of Schubert varieties, Amer. J. of Math., 103 (1981), 835 - 850.MathSciNetCrossRefGoogle Scholar
  3. [3]
    C. DeConcini and E. Strickland, On the variety of complexes, Advances in Math., 41 (1981) 57 - 77.MathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup., 7 (1974), 53 - 88.MathSciNetMATHGoogle Scholar
  5. [5]
    C. Huneke and V. Lakshmibai, Arithmetic Cohen-Macaulayness and normality of the multi-cones over Schubert varieties in Sl(n)/B,preprint.Google Scholar
  6. [6]
    G. R. Kempf, Images of homogeneous vector bundles and variety of complexes, Bull. A.M.S., 81 (1975), 900 - 901.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    V. Lakshmibai, C. Musili and C. S. Seshadri, Cohomology of line bundles on GIB, Ann. Sci. École Norm. Sup., 7 (1974), 89 - 138.MathSciNetGoogle Scholar
  8. [8]
    V. Lakshmibai, C. Musili and C. S. Seshadri, Geometry of G/P-III (Standard monomial theory for a quasi-miniscule P), Proc. Ind. Acad. Sci., 87 (1978), 93 - 177.Google Scholar
  9. [9]
    V. Lakshmibai, C. Musili and C. S. Seshadri, Geometry of G/P-IV (Standard monomial theory for classical types), Proc. Ind. Acad. Sci., 88 (1979), 279 - 362.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    V. Lakshmibai, C. Musili and C. S. Seshadri, Geometry of G/P, Bull. A.M.S., (New Series), 1 (1979), 432 - 435.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    V. Lakshmibai, C. Musili and C. S. Seshadri, Geometry of G/P-II (The work of DeConcini and Procesi and the basic conjectures), Proc. Ind. Acad. Sci., 87 (1978), 1 - 54.MATHCrossRefGoogle Scholar
  12. [12]
    C. Musili, Postulation formula for Schubert varieties, J. hid. Math. Soc., 86, (1972), 143 - 171.MathSciNetGoogle Scholar
  13. [13]
    C. Musili, Some properties of Schubert varieties, J. Ind. Math. Soc., 88 (1974), 131 - 145.MathSciNetGoogle Scholar
  14. [14]
    C. Musli and C. S. Seshadri, Standard monomial theory, Séminaire d'Algèbre Paul Dubreil et Marie-Paule Malliavin proceedings, Paris 1980, 33 ème Année), 441-476.Google Scholar
  15. [15]
    C. S. Seshadri, Geometry of G/P-I (Standard monomial theory for a minuscule P), "C. P. Ramanujam: A Tribute", 207, (Springer-Verlag), Published for the Tata Institute of Fundamental Research, Bombay, 1978, 207 - 239.Google Scholar
  16. [16]
    C. S. Seshadri, Standard monomial theory and the work of Dema- zure, Symposia in Math., 1 (1981) ( Proceedings of a Symposium on Algebraic and Analytic Varieties, Tokyo), to appear.Google Scholar
  17. [17]
    E. Strickland, On the conormal bundle of the Determinantal variety, preprint.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • C. Musili
    • 1
  • Conjeeveram S. Seshadri
    • 2
  1. 1.School of MathematicsUniversity of Hyderabad Central UniversityP.O. HyderabadIndia
  2. 2.Tata Institute for Fundamental ResearchBombayIndia

Personalised recommendations