Skip to main content

Canonical Height Pairings via Biextensions

  • Chapter

Part of the book series: Progress in Mathematics ((PM,volume 35))

Abstract

The object of this paper is to present the foundations of a theory of p-adic-valued height pairings

$$A\left( K \right) \times A'\left( K \right) \to {Q_p}$$
(*)

, where Λ is a abelian variety over a global field K, and A′ is its dual. We say “pairings” in the plural because, in contrast to the classical theory of ℝ-valued) canonical height, there may be many canonical p-adic valued pairings: as we explain in § 4, up to nontrivial scalar multiple, they are in one-to-one correspondence with ℤ p -extensions L/K whose ramified primes are finite in number and are primes of ordinary reduction (1.1) for A.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Actin, Algebraization of formal moduli: 1, Global Analysis. Papers in honor of K. Kodaira. (1970) 21–71. Princeton Univ. Press.

    Google Scholar 

  2. I. Barsotti, Considerations on theta-functions, Symposia Mathematica (1970) p. 247.

    Google Scholar 

  3. S. Bloch, A note on height pairings, Tamagawa numbers and the Birch and Swinnerton-llyer conjecture, Inv. Math. 58 (1980), 65–76.

    Google Scholar 

  4. D. Bernardi, Hauteur p-adique sur les courbes elliptiques. Séminaire de Théorie des Nombres, Paris 1979–80, Séminaire Delange-Pisot-Poitou. Progress in Math. series vol. 12. Birkhäuser, Boston-Basel-Stuttgart. (1981) 1–14.

    Google Scholar 

  5. L. Breen, Fonctions thêta et théorème du cube, preprint of the Laboratoire associé au C.N.R.S. N° 305, Université de Rennes I, 1982.

    Google Scholar 

  6. V. Cristante, Theta functions and Barsotti- Tate groups,Annali della Scuola Normale Superiore di Pisa, Serie IV, 7 (1980) 181215.

    Google Scholar 

  7. M. Harris, Systematic growth of Mordell-Weil groups of abelian varieties in towers of number fields,Inv. Math. 51 (1979) 123141.

    Google Scholar 

  8. D. Knutson, Algebraic Spaces, Lecture Notes in Math. 203, Springer Berlin-Heidelberg-New York, 1971.

    Google Scholar 

  9. P. F. Kurchanov, Elliptic curves of infinite rank over F-extensions, Math. USSR Sbornik, 19, 320–324 (1973).

    Article  Google Scholar 

  10. J. Manin, The Tate height of points on an abelian variety. Its variants and applications. Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1363–1390. (AMS Translations 59 (1966) 82–110 ).

    Google Scholar 

  11. B. Mazur, Rational points of abelian varieties with values in towers of number fields, Inv. Math. 18 (1972) 183–266.

    MathSciNet  MATH  Google Scholar 

  12. D. Mumford, Biextensions of formal groups, in the Proceedings of the Bombay Colloquium on Algebraic Geometry, Tata Institute of Fundamental Research Studies in Mathematics 4, London, Oxford University Press 1968.

    Google Scholar 

  13. D. Mumford, A remark on Mordell’s conjecture, Amer. J. Math. 87 (1965) 1007–1016.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. P. Murre, On contravariant functors from the category of pre-schemes over a field into the category of abelian groups, Pub. Math. I. H. E. S. no 23, 1964.

    Google Scholar 

  15. A. Néron, Quasi-fonctions et hauteurs sur les variétés abéliennes, Annals of Math. 82, n° 2, (1965) 249–331.

    Google Scholar 

  16. A. Néron, Hauteurs et fonctions thêta. Rend. Sci. Mat. Milano 46 (1976) 111–135.

    Article  MATH  Google Scholar 

  17. A. Néron, Fonctions thêta p-adiques, Symposia Mathematica, 24 (1981) 315–345.

    Google Scholar 

  18. A. Néron, Fonctions thêta p-adiques et hauteurs p-adiques, pp. 149–174, in Séminaire de theorie des nombres (Séminaire DelangePisot-Poitou), Paris 1980–81, Progress in Math., Vol 22, Birkhäuser Boston-Basel-Stuttgart (1982).

    Google Scholar 

  19. P. Norman, Theta Functions. Handwritten manuscript.

    Google Scholar 

  20. B. Perrin-Riou, Descente infinie et hauteur p-adique sur les courbes elliptiques à multiplication complexe. To appear in Inv. Math.

    Google Scholar 

  21. M. Rosenblum, in collaboration with S. Abramov, The BirchSwinnerton-Dyer conjecture mod p. Handwritten manuscript.

    Google Scholar 

  22. P. Schneider, p-adic height pairings I,to appear in Inv. Math.

    Google Scholar 

  23. J. Tate, Variation of the canonical height of a point depending on a parameter. To appear in Amer. J. Math.

    Google Scholar 

  24. Ju. G. Zarhin, Néron Pairing and Quasicharacters, Izv. Akad. Nauk. SSSR Ser. Mat. Tom 36 (1972) No. 3, 497–509. (Math. USSR Izvestija, Vol. 6 (1972) No. 3, 491–503.)

    Google Scholar 

  25. A. Grothendieck, Éléments de géométrie algébrigue. Publications Mathématiques, I. H. E. S./Paris (1961).

    Google Scholar 

  26. A. Grothendieck, Cohomologie locale des faisceaux cohérents et Théorèmes de Lefschetz locaux et globaux, North-Holland Publishing Company - Amsterdam (1968).

    Google Scholar 

  27. M. Demazure and A. Grothendieck et al, Séminaire de Géométrie Algébrique du Bois Marie 1962/64. Schémas en Groupes II. Lecture Notes in Mathematics. 152, Springer, Berlin-Heidelberg-New York (1970).

    Google Scholar 

  28. A. Grothendieck et al, Séminaire de Géometrie Algébrique du Bois Marie. 1967/69. Groupes de Monodromie en Géométrie Algébrique. Lecture Notes in Mathematics. 288, Springer, BerlinHeidelberg-New York (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mazur, B., Tate, J. (1983). Canonical Height Pairings via Biextensions. In: Artin, M., Tate, J. (eds) Arithmetic and Geometry. Progress in Mathematics, vol 35. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-9284-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9284-3_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3132-1

  • Online ISBN: 978-1-4757-9284-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics