Skip to main content

Number Theoretic Applications of Polynomials with Rational Coefficients Defined by Extremality Conditions

  • Chapter
Book cover Arithmetic and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 35))

Abstract

It is well known that classes of polynomials in one variable defined by various extremality conditions play an extremely important role in complex analysis. Among these classes we find orthogonal polynomials (especially classical orthogonal polynomials expressed as hypergeometric polynomials) and polynomials least deviating from zero on a given continuum (Chebicheff polynomials). Orthogonal polynomials of the first and second kind appear as denominators and numerators of the Padé approximations to functions of classical analysis and satisfy familiar three-term linear recurrences. These polynomials were used repeatedly to study diophantine approximations of values of functions of classical analysis, especially exponential and logarithmic functions at rational points x = p/q [1], [2], [3], [4], [5]. The methods of Padé approximation in diophantine approximations are quite powerful and convenient to use, since they replace the problem of rational approximations to numbers with the approximations of functions. There are, however, arithmetic restrictions on rational approximations to functions if they are to be used for diophantine approximations. The main restriction on polynomials here is to have rational integer coefficients or rational coefficients with a controllable denominator. Such arithmetic restrictions transform a typical problem of classical analysis into an unusual mixture of arithmetic and analytic difficulties. For example, recurrences defining orthogonal polynomials must be of a special type to guarantee that their solutions will have hounded denominators. In this paper we consider various classes of polynomials generated by imposing arithmetic restrictions on classical approximation theory problems (orthogonal or Chebicheff polynomials).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. V. Ahlfors, Conformal invariants, McGraw-Hill, 1973.

    Google Scholar 

  2. A. O. Gelfond, L. G. Schnirelman, Uspekhi Math., Nauk, No. 2, (1936) (Russian).

    Google Scholar 

  3. A. O. Gelfond, Comment “On determining the number of primes not exceeding the given values” and “On primes” in P. L. Chebicheff, Complete Works, v. 1., Academy, Moscow, 1946, 2nd printing (Russian).

    Google Scholar 

  4. Le Baron O. Ferguson, Approximation by polynomials with integral coefficients, Mathematical surveys #17, American Mathematical Society, Providence, 1980.

    Google Scholar 

  5. R. M. Trigub, Metric questions of the theory of functions and mappings, No. 2., pp. 267–333, Naukova Dumka Publishing House, Kiev, 1971 ( Russian).

    Google Scholar 

  6. A. E. Ingham, The distribution of prime numbers, Cambridge Tracts, #30, Cambridge Univ. Press, 1932.

    Google Scholar 

  7. M. Fekete, C. R. Acad. Sci. Paris. 1923, 17.

    Google Scholar 

  8. A. O. Celfond, Uspekhi Math. Nauk. 10 (1955), No. 1, 41–56 (Russian).

    Google Scholar 

  9. E. Aparicio, Revista Matematica Hispano-Americana, 4 Serie, t. XXXVIII, No. 6, 259–70 Madrid, 1978.

    Google Scholar 

  10. E. Aparicio, Revista de la Universidad de Santader, Numero 2, Parte 1 (1979), 289–91.

    Google Scholar 

  11. E. Aparicio, Revista Matematica Hispano-Americana, 4 Serie, v. XXXVI (1976), 105–24.

    Google Scholar 

  12. A. Selberg, Norsk Mathematisk Tidsskrift, 26 (1944), 71–78.

    MathSciNet  MATH  Google Scholar 

  13. G. Szegö, Orthogonal polynomials, American Mathematical Society Colloquium Publication #23, Providence, Rhode Island, 1939.

    Google Scholar 

  14. L. Hulthén, Arkiv for Mat. Astron. Fysik, 26A, Hafte 3, No. 11 (1938), 1–106.

    Google Scholar 

  15. D. V. Chudnovsky, G. V. Chudnovsky, Letters Nuovo Cimento, 19, No. 8 (1977), 300–02.

    Article  Google Scholar 

  16. J. Nuttall, Bifurcation phenomena in mathematical physics and related topics,D. Reidel Publishing Company, Boston, 1980, 185202.

    Google Scholar 

  17. N. I. Muskhelishvili, Singular integral equations, P. Noordhoff, N. V. Groningen, Holland, 1953.

    Google Scholar 

  18. W. J. LeVeque, Topics in number theory, v. 1, Addison-Wesley, 1956.

    Google Scholar 

  19. J. J. Sylvester, Messenger. Math. (2), 21 (1891), p. 120.

    Google Scholar 

  20. E. Landau, Sitz. Akad. Wissen. Wien, Math-Nat. Klasse, bd. CXVII, Abt. Ha, 1908.

    Google Scholar 

  21. M. Nair, The American Mathematical Monthly, 89, No. 2, (1982), 126–29.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Nair, J. London Math. Soc. (2), 25 (1982), 385–91.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. G. Diamond, K. S. McCurley, Lecture Notes Math., v. 899, Springer, 1981, 239–53.

    Google Scholar 

  24. D. G. Cantor, J. Reine Angew. Math., 316 (1980), 160–207.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chudnovsky, G.V. (1983). Number Theoretic Applications of Polynomials with Rational Coefficients Defined by Extremality Conditions. In: Artin, M., Tate, J. (eds) Arithmetic and Geometry. Progress in Mathematics, vol 35. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-9284-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9284-3_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3132-1

  • Online ISBN: 978-1-4757-9284-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics