p-adic Etale Cohomology

  • S. Bloch
Part of the Progress in Mathematics book series (PM, volume 35)


What follows is a report on joint work with O. Gabber and K. Kato.* A manuscript with complete proofs exists and is currently being revised. For compelling physical reasons (viz. time, space, and distance) however, I will give here only statements of results; and my coauthors have not had the opportunity to correct any stupidities which may have slipped in. The conjectures in §3 are my own. I like to think that this research has been strongly influenced by the work of Shafarevich, both by his work on algebraic geometry in characteristic p and by his work on arithmetical algebraic geometry. In fact, recently Ogus has used these results to apply the basic Rudakov-Shafarevich result on existence and smoothness of moduli for K3 surfaces in characteristic p to the study of the moduli space when p = 2.


Modulus Space Modular Form Spectral Sequence Abelian Variety Newton Polygon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Berthelot, P., Cohomologie cristalline des schémas de caractéristique p > 0. Lecture Notes in Math. 407, Springer-Verlag (1974).Google Scholar
  2. [2]
    Bloch, S., Algebraic K-theory and crystalline cohomology, Pub. Math. LH.E.S. 47, 187–268 (1974).Google Scholar
  3. [3]
    Bloch. S., Some formulas pertaining to the K-theory of commutative group schemes, J. Algebra, 53, 304–326 (1978).MathSciNetCrossRefGoogle Scholar
  4. [4]
    Bloch, S., Gabber, O., and Kato, K., p-adic étale cohomology (manuscript).Google Scholar
  5. [5]
    Cartier, P., Une nouvelle opération sur les formes différentielles, C. R. Acad. Sci. Paris 244, 426–428 (1957).MathSciNetzbMATHGoogle Scholar
  6. [6]
    Deligne, P., (with Illusie, L.) Cristaux ordinaires et coordonnés canoniques, in Surfaces algébriques, Lecture Notes in Math. 868, Springer-Verlag (1981).Google Scholar
  7. [7]
    Deligne, P., Formes modulaires et représentations 1-adiques, Sém. Bourbaki, 1968/69, exp. 355, Lecture Notes in Math. 179, Springer-Verlag (1971).Google Scholar
  8. [8]
    Dwork, B., Normalized period matrices, Ann. Math., 94, 337–388 (1971).MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Fontaine, J. M., Formes différentielles et modules de Tate..., Inv. Math. 65, 379–409 (1982).MathSciNetzbMATHGoogle Scholar
  10. [10]
    Gabber, O., Gersten’s conjecture for some complexes of vanishing cycles (manuscript).Google Scholar
  11. [11]
    Grothendieck, A.,, SGA4,Lecture Notes in Math. 269, 270, 305, Springer-Verlag (1972–73).Google Scholar
  12. [12]
    Grothendieck, A., Deligne, P., Katz, N., SGA7,Lecture Notes in Math. 288, 340, Springer-Verlag (1972–73).Google Scholar
  13. [13]
    Hartshorne, R., Residues and Duality, Lecture Notes in Math. 20, Springer-Verlag (1966).Google Scholar
  14. [14]
    Illusie, L., Complexe de deRham-Witt et cohomologie cristalline, Ann. Sci. Ec. Norm. Sup. 4` sér. 12, 501–661 (1979).MathSciNetzbMATHGoogle Scholar
  15. [15]
    Illusie, L., Raynaud, M., Les suites spectrales associées au complexe de deRham-Witt (manuscript).Google Scholar
  16. [16]
    Katz, N., Serre-Tate local moduli, in Surfaces algébriques, Lecture Notes Math. 868, Springer-Verlag (1981).Google Scholar
  17. [17]
    Kato, K., Galois cohomology of complete discrete valuation fields (preprint).Google Scholar
  18. [18]
    Kato, K., A generalization of local class field theory by using K-groups. I, II, J. Fac. Sci. Univ. Tokyo, 26, 303–376 (1979), and 27, 603–683 (1980).zbMATHGoogle Scholar
  19. [19]
    Koblitz, N., p-adic variation of the zeta function over families of varieties defined over finite fields, Comp. Math. 31, 119–218 (1975).MathSciNetzbMATHGoogle Scholar
  20. [20]
    Milnor, J., Algebraic K-theory and quadratic forms, Inv. Math. 9, 318–344 (1970).zbMATHCrossRefGoogle Scholar
  21. [21]
    Oort,F., Lenstra, H., Simple abelian varieties having prescribed formal isogeny type, J. Pure Appl. Algebra 4, 47–53 (1974).MathSciNetCrossRefGoogle Scholar
  22. [22]
    Serre, J-P., and Tate, J., Good reduction of abelian varieties, Ann. Math. 88, 492–517 (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    Steenbrink, J., Limits of Hodge structures, Inv. Math. 31, 229–257 (1975).MathSciNetGoogle Scholar
  24. [24]
    Stienstra, J., The formal completion of the second chow group; a K-theoretic approach, in Proceedings of the Rennes Conference in Algebraic Geometry.Google Scholar
  25. [25]
    Tate, J., p-divisible groups, in Proceedings of a Conference on local fields, Springer-Verlag (1967).Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • S. Bloch
    • 1
  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations