Advertisement

The Torelli Theorem for Ordinary K3 Surfaces over Finite Fields

  • Niels O. Nygaard
Part of the Progress in Mathematics book series (PM, volume 35)

Abstract

Shafarevich’s and Piatetski-Shapiro’s proof of the Torelli theorem for K3 surfaces over C [13] is one of the most beautiful proofs in complex algebraic geometry.

Keywords

Modulus Space Abelian Variety Hodge Structure Residue Field Finite Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Artin, M., Supersingular KS surfaces. Ann. Sc. Ec. Norm. Sup. 4e série, t. 7, 543–568, (1974).MathSciNetzbMATHGoogle Scholar
  2. [2]
    Artin, M., Mazur, B., Formai groups arising from algebraic varieties. Ann. Sc. Éc. Norm. Sup. 4e série, t. 10, 87–132, (1977).MathSciNetzbMATHGoogle Scholar
  3. [3]
    Berthelot, P., Cohomologie cristalline des schemas des caractéristique p 0. Lecture Notes in Math. no. 407, Springer Verlag. Berlin, Heidelberg, New York, (1974).Google Scholar
  4. [4]
    Deligne, P., La conjecture de Weil pour les surfaces K3. Inv. Math. 15, 206–226, (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Deligne, P., Variétés abéliennes ordinaires sur un corps fini. Inv. Math. 8, 238–2’13, (1968).Google Scholar
  6. [6]
    Deligne, P., Illusie, L., Cristaux ordinaires et coordonées canoniques. In Surfaces Algebrique, Seminaire Orsay, 1976–78. Lecture Notes in Math. no. 868, Springer Verlag. Berlin, Heidelberg, New York, (1981).Google Scholar
  7. [7]
    Katz, N., Serre-Tate local moduli of ordinary abelian varieties. In Surfaces Algebrique, Seminaire Orsay, 1976–78. Lecture Notes in Math. no. 868, Springer Verlag. Berlin, Heidelberg, New York, (1981).Google Scholar
  8. [8]
    Kuga, M., Satake, I., Abelian varieties associated to polarized K3 surfaces. Math. Ann. 169, 239–242, (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Langlands, R., Some contemporary problems with origins in the Jugendtraum (Hilbert’s problem 12). In Mathematical developments arising from Hilbert problems, Symp. in Pure Math. vol. XXVIII, part 2. American Math. Soc. Providence, Rhode Island, (1976).Google Scholar
  10. [10]
    Nygaard, N., The Tate conjecture for ordinary K3 surfaces over finite fields. To appear in Inv. Math.Google Scholar
  11. [11]
    Ogus, A., Supersingular K3 crystals. Journeés dc Géometrié Algébrique. Rennes 1978, Astérisque no. 64, 3–86, (1978).MathSciNetGoogle Scholar
  12. [12]
    Ogus, A., A crystalline Torelli theorem for supersingular K3 surfaces. This volume.Google Scholar
  13. [13]
    Shafarevich, I., Piatetski-Shapiro, I. A Torelli theorem for surfaces of type K3. Math. U.S.S.R. Izvestija 5, 547–588, (1971).Google Scholar
  14. [14]
    Shafarevich, I., Rudakov, A., Degeneration of K3 surfaces over fields of finite characteristic. Preprint.Google Scholar
  15. [15]
    Tate, J., Endomorphisms of abelian varieties over finite fields. Inv. Math. no. 2, 134–144, (1966).MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Mumford, D., Matsusaka, Two fundamental theorems on deformations of polarized algebraic varieties. Amer. Jour. of Math. 86, (1964).Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Niels O. Nygaard
    • 1
  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations