Production of Viral Glycoproteins in Genetically Engineered Mammalian Cell Lines for Use as Vaccines against Herpes Simplex Virus and the Acquired Immune Deficiency Syndrome Retrovirus

  • Phillip W. Berman
  • Timothy Gregory
  • Donald Dowbenko
  • Laurence A. Lasky
Part of the Applied Virology Research book series (AOTP, volume 1)


One promise of recombinant DNA technology is the possibility of developing new and improved vaccines to prevent the transmission of infectious diseases. Using these techniques, it is possible to produce virtually unlimited quantities of the surface antigens of pathogenic organisms without resorting to the large-scale culture of the pathogen itself. Conventional methods of vaccine production (i.e., live attenuated viruses, killed viruses, or extracts of killed viruses) are limited by the fact that some pathogens are difficult or uneconomical to grow. In addition, society is still haunted by fears that such vaccine preparations could be contaminated by unattenuated or inadequately inactivated virus. Even when the most stringent production methods are applied, manufacturers must be concerned with the possibility that a vaccine could induce latent infections, oncogenic transformation, or autoimmunity. The recombinant DNA approach to vaccine development circumvents these problems by providing a preparation consisting of a single highly purified protein, derived from a safe noninfectious source.


Acquire Immune Deficiency Syndrome Apparent Molecular Weight Genital Herpes Hydrophobic Domain Recombinant Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, S., and Elder, J. H. (1984). Science 226, 1328–1330.PubMedCrossRefGoogle Scholar
  2. Allan, J., Coligan, J., Barin, F., McLane, M., Sodrowski, J., Rosen, C., Haseltine W., Lee, T., and Essex, M. (1985). Science 228, 1091–1094.PubMedCrossRefGoogle Scholar
  3. Berman, P. W., Gregory, T., Crase, D., and Lasky, L. A. (1985). Science 227, 1490–1492.PubMedCrossRefGoogle Scholar
  4. Coffin, J., Haase, A., Levy, J. A., Montagnier, L., Orosziam, S., Teick, N., Temin, H., Toyoshima, K., Varmus, H., Vogt, P., Weiss, R. (1986). Nature (Lond.) 321, 10.Google Scholar
  5. Dalgleish, A. G., Beverly, P. C. L., Clapham, P. R., Crawford, D. H., Greaves, M. F., and Weiss, R. A. (1984). Nature (Lond.) 312, 763–766.CrossRefGoogle Scholar
  6. Fauci, A., Macker, A., Longo, D., Lane, H., Rook, A., Masur, H., and Gelmann, E. (1984). Ann. Med. 100, 92–106.CrossRefGoogle Scholar
  7. Hitzman, R. A., Chen, C. Y., Hagie, F. E., Patzer, E. J., Liu, C-C, Estell, J. D., Miller, J. V., Yaffe, A., Kleid, D. G., Levinson, A. D., and Opperman, H. (1983). Nucleic Acids Res. 11, 2745–2763.CrossRefGoogle Scholar
  8. Hopp, T. P., and Woods, K. R. (1981). Proc. Natl. Acad. Sci. USA 78, 3824–3828.PubMedCrossRefGoogle Scholar
  9. Kern, E. R., Vogt, P. E., Gregory, T., Lasky, L. A., and Berman, P. W. (1987). J. Virol, (in press).Google Scholar
  10. Klatzman, D., Champagne, E., Chamoret, S., Greuest, J., Guefard, D., Hercond, T., Gluckman, J. C, and Montagnier, L. (1984). Nature (Lond.) 312, 767–768.CrossRefGoogle Scholar
  11. Kleid, D. G., Yansura, D., Small, B., Dowbenko, D., Moore, D. M., Grubman, M. J., McKercher, P. D., Morgan, D. O., Robertson, B. H., and Bachrach, H. L. (1981). Science 214, 1125–1129.PubMedCrossRefGoogle Scholar
  12. Lasky, L. A., Dowbenko, D., Simonsen, C. C, and Berman, P. W. (1984). Bio /Technology 2, 527–532.Google Scholar
  13. Lasky, L. A., Groopman, J. E., Fennie, C. W., Benz, P. M., Capon, D. J., Dowbenko, D. J., Nakamura, G. R., Nunes, W. M., Renz, M. E., and Berman, P. W. (1986). Science 233, 209–212.PubMedCrossRefGoogle Scholar
  14. Muesing, M. A., Smith, D. H., Cabradilla, C. D., Benton, C. V., Lasky, L. A., and Capon, D. J. (1985). Nature (Lond.) 313, 450–458.CrossRefGoogle Scholar
  15. Paoletti, E., Lipinskas, B. R., Samsonoff, C, Mercer, S., and Panicali, D. (1984). Proc. Natl. Acad. Sci. USA 81, 193–197.PubMedCrossRefGoogle Scholar
  16. Smith, G. L., Murphy, B. R., and Moss, B. (1983). Proc. Natl. Acad. Sci. USA 80, 7155–7159.PubMedCrossRefGoogle Scholar
  17. Staal, F. W., and Gallo, R. C. (1985). Blood 65, 253–263.Google Scholar
  18. Valenzuela, P., Medina, A., Rutter, W. J., Ammerer, G., and Hal, B. D., (1982). Nature (Lond.) 298, 347–350.CrossRefGoogle Scholar
  19. Veronese, F. D., DeVico, A. L., Copeland, T. D., Oroszlan, S., Gallo, R. C., Sarnagadharan, M. G. (1985). Science 229, 1402–1405.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Phillip W. Berman
    • 1
  • Timothy Gregory
    • 2
  • Donald Dowbenko
    • 1
  • Laurence A. Lasky
    • 1
  1. 1.Department of Molecular BiologyGenentech, Inc.South San FranciscoUSA
  2. 2.Department of Process SciencesGenentech, Inc.South San FranciscoUSA

Personalised recommendations