Multireference Coupled-Cluster Approach to Spectroscopic Constants: Molecular Geometries and Harmonic Frequencies

  • Uzi Kaldor

Abstract

The coupled-cluster (CC) method,1–4 originally designed for closed-shell systems, has been extended to include open-shell systems, which cannot be described adequately by a single determinant.5–22 The basic approach of the multireference method is to define an effective Hamiltonian in a low-dimensional model (or P) space, with eigenvalues approximating some desirable eigenvalues of the physical Hamiltonian. The effect of the complementary Q space is taken into account in the calculation of the effective Hamiltonian matrix elements, using an appropriate truncation of the wave operator. Two different approaches are commonly used. Most applications to date follow the state-universal or Fock space approach, with simultaneous calculation of many states having different numbers of valence electrons. The state-specific or Hilbert space method, on the other hand, treats a manifold of states with a constant number of valence electrons. The selection of the model space plays a crucial role in both methods. Intruder states, which spoil the convergence of the calculation, occur frequently. Careful construction of the model space may alleviate the problem. In particular, so-called incomplete model spaces are useful in many cases.

Keywords

Model Space Valence Electron Electron Affinity Harmonic Frequency Spectroscopic Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Hubbard, Proc. Roy. Soc. A240: 539 (1957)CrossRefGoogle Scholar
  2. J. Hubbard, ibid. A243: 336 (1958).Google Scholar
  3. 2.
    F. Coester, Nucl. Phys. 7: 421 (1958)CrossRefGoogle Scholar
  4. F. Coester and H. Kummel, Nucl. Phys. 17: 477 (1960)CrossRefGoogle Scholar
  5. H. Kummel, K. H. Lührmann and J. G. Zabolitzky, Phys. Rept. 36: 1 (1978).CrossRefGoogle Scholar
  6. 3.
    J. Cizek, J. Chem. Phys. 45: 4256 (1966)CrossRefGoogle Scholar
  7. J. Cizek, Adv. Chem. Phys. 14: 35 (1969).CrossRefGoogle Scholar
  8. 4.
    J. Paldus, J. Cizek and I. Shavitt, Phys. Rev. A 5: 50 (1972)CrossRefGoogle Scholar
  9. J. Paldus, J. Chem. Phys. 67: 303 (1977)CrossRefGoogle Scholar
  10. B. G. Adams and J. Paldus, Phys. Rev. A 20: 1 (1979).CrossRefGoogle Scholar
  11. 5.
    F. E. Harris, Intern. J. Quantum Chem. S11: 403 (1977).Google Scholar
  12. 6.
    H. J. Monkhorst, Intern. J. Quantum Chem. 511: 421 (1977).Google Scholar
  13. 7.
    J. Paldus, J. Cizek, M. Saute and A. Laforgue, Phys. Rev. A 17: 805 (1978)CrossRefGoogle Scholar
  14. M. Saute, J. Paldus and J. Cizek, Intern. J. Quantum Chem. 15: 463 (1979).CrossRefGoogle Scholar
  15. 8.
    D. Mukherjee, R. K. Moitra and A. Mukhopadhyay, Pramana 4: 247 (1975)CrossRefGoogle Scholar
  16. Mol. Phys. 30:1861 (1975)Google Scholar
  17. A. Mukhopadhyay, R. K. Moitra and D. Mukherjee, J. Phys. B 12: 1 (1979)CrossRefGoogle Scholar
  18. D. Mukherjee and P. K. Mukherjee, Chem. Phys. 39: 325 (1979)CrossRefGoogle Scholar
  19. S. S. Adnan, S. Bhattacharyya and D. Mukherjee, Mol. Phys. 39: 519 (1980)CrossRefGoogle Scholar
  20. Chem. Phys. Lett. 85:204 (1981).Google Scholar
  21. 9.
    R. Offerman, W. Ey and H. Kummel, Nucl. Phys. A273: 349 (1976)CrossRefGoogle Scholar
  22. R. Offerman, Nucl. Phys. A273: 368 (1976)CrossRefGoogle Scholar
  23. W. Ey, Nucl. Phys. A296: 189 (1978).CrossRefGoogle Scholar
  24. 10.
    I. Lindgren, Intern. J. Quantum Chem. S12: 33 (1978)Google Scholar
  25. S. Salomonson, I. Lindgren and A. M. Martensson, Phys. Scr. 21: 351 (1980)CrossRefGoogle Scholar
  26. I. Lindgren and J. Morrison, “Atomic Many-Body Theory”, Springer, Berlin, (1982).CrossRefGoogle Scholar
  27. 11.
    I. Lindgren, Phys. Scr. 32: 291, 32: 611 (1985).Google Scholar
  28. 12.
    H. Nakatsuji, Chem. Phys. Lett. 59: 362 (1978)CrossRefGoogle Scholar
  29. H. Nakatsuji, ibid. 67: 329 (1979)Google Scholar
  30. H. Nakatsuji, Chem. Phys. 75: 425 (1983)CrossRefGoogle Scholar
  31. H. Nakatsuji, ibid. 76: 283 (1983)Google Scholar
  32. H. Nakatsuji, J. Chem. Phys. 80: 3703 (1984).CrossRefGoogle Scholar
  33. 13.
    H. Reitz and W. Kutzelnigg, Chem. Phys. Lett. 66: 111 (1979)CrossRefGoogle Scholar
  34. W. Kutzelnigg, J. Chem. Phys. 77: 3081 (1981)CrossRefGoogle Scholar
  35. W. Kutzelnigg, ibid. 80: 822 (1984).Google Scholar
  36. 14.
    B. Jeziorski and H. J. Monkhorst, Phys. Rev. A 24: 1668 (1981)CrossRefGoogle Scholar
  37. L. Z. Stolarczyk and H. J. Monkhorst, Phys. Rev. A 32: 725Google Scholar
  38. L. Z. Stolarczyk and H. J. Monkhorst, Phys. Rev. 32: 743 (1985).Google Scholar
  39. 15.
    A. Banerjee and J. Simons, Intern. J. Quantum Chem. 19: 207 (1981).CrossRefGoogle Scholar
  40. 16.
    V. Kvasnicka, Chem. Phys. Lett. 79: 89 (1981).CrossRefGoogle Scholar
  41. 17.
    A. Hague and D. Mukherjee, J. Chem. Phys. 80: 5058 (1984)CrossRefGoogle Scholar
  42. A. Hague and D. Mukherjee, Pramana 23: 651 (1984).CrossRefGoogle Scholar
  43. 18.
    P. Westhaus, Int. J. Quantum Chem. S7: 463 (1973)CrossRefGoogle Scholar
  44. P. Westhaus, E. G. Bradford, and D. Hall, J. Chem. Phys. 62: 1607 (1975).CrossRefGoogle Scholar
  45. 19.
    I. Shavitt and L. T. Redmon, J. Chem. Phys. 73: 5711 (1980).CrossRefGoogle Scholar
  46. 20.
    L. T. Redmon and R. J. Bartlett, J. Chem. Phys. 76: 1938 (1972).CrossRefGoogle Scholar
  47. 21.
    J. Arponen, Ann. Phys. (NY) 151: 311 (1983).CrossRefGoogle Scholar
  48. 22.
    K. Tanaka and H. Terashima, Chem. Phys. Lett. 106: 558 (1984).CrossRefGoogle Scholar
  49. 23.
    D. Mukherjee and S. Pal, Adv. Quantum Chem. 20: 292 (1989).Google Scholar
  50. 24.
    U. Kaldor, J. Comput. Chem. 8: 448 (1987).CrossRefGoogle Scholar
  51. 25.
    U. Kaldor, J. Chem. Phys. 87: 4693 (1987).CrossRefGoogle Scholar
  52. 26.
    A. Hague and U. Kaldor, Chem. Phys. Lett. 117: 347 (1985).CrossRefGoogle Scholar
  53. 27.
    A. Hague and U. Kaldor, Intern. J. Quantum Chem. 29: 425 (1986).CrossRefGoogle Scholar
  54. 28.
    U. Kaldor and A. Hague, Chem. Phys. Lett. 128: 45 (1986).CrossRefGoogle Scholar
  55. 29.
    U. Kaldor, Intern. J. Quantum Chem. S20: 445 (1986).CrossRefGoogle Scholar
  56. 30.
    U. Kaldor, J. Chem. Phys. 87: 467 (1987).CrossRefGoogle Scholar
  57. 31.
    S. Pal, M. Rittby, R. J. Bartlett, D. Sinha, and D. Mukherjee, Chem. Phys. Lett. 137: 273 (1987)CrossRefGoogle Scholar
  58. S. Pal, M. Rittby, R. J. Bartlett, D. Sinha, and D. Mukherjee, J. Chem. Phys. 88: 4357 (1988)CrossRefGoogle Scholar
  59. M. Rittby, S. Pal, and R. J. Bartlett, J. Chem. Phys. 90: 3214 (1989).CrossRefGoogle Scholar
  60. 32.
    B. H. Brandow, Rev. Mod. Phys. 39: 771 (1967).Google Scholar
  61. 33.
    G. Hose and U. Kaldor, J. Phys. B 12: 3827 (1979).CrossRefGoogle Scholar
  62. 34.
    T. H. Schucan and H. A. Weidenmuller, Ann. Phys.. (NY) 73: 108 (1972)CrossRefGoogle Scholar
  63. T. H. Schucan and H. A. Weidenmuller, ibid. 76: 483 (1973).Google Scholar
  64. 35.
    G. Hose and U. Kaldor, Phys. Scr. 21: 357 (1980)CrossRefGoogle Scholar
  65. G. Hose and U. Kaldor, Chem. Phys. 63: 165 (1981)CrossRefGoogle Scholar
  66. G. Hose and U. Kaldor, J. Phys. Chem. 86: 2133 (1982)CrossRefGoogle Scholar
  67. G. Hose and U. Kaldor, Phys. Rev. A 30: 2932 (1984)CrossRefGoogle Scholar
  68. U. Kaldor, J. Chem. Phys. 81: 2406 (1984).CrossRefGoogle Scholar
  69. 36.
    D. Mukherjee, Chem. Phys. Lett. 125: 207 (1986)CrossRefGoogle Scholar
  70. D. Mukherjee, Intern. J. Quantum Chem. S20: 409 (1986).CrossRefGoogle Scholar
  71. 37.
    I. Lindgren and D. Mukherjee, Phys. Rep. 151: 93 (1987)CrossRefGoogle Scholar
  72. W. Kutzelnigg, D. Mukherjee, and S. Koch, J. Chem. Phys. 87: 5902 (1987)CrossRefGoogle Scholar
  73. D. Mukherjee, W. Kutzelnigg, and S. Koch, J. Chem. Phys. 87: 5911 (1987).CrossRefGoogle Scholar
  74. 38.
    L. Meissner, S. A. Kucharski, and R. J. Bartlett, J. Chem. Phys. 91: 6187 (1989)CrossRefGoogle Scholar
  75. L. Meissner and R. J. Bartlett, J. Chem. Phys. 92: 561 (1990).CrossRefGoogle Scholar
  76. 39.
    D. Mukhopadhyay and D. Mukherjee, Chem. Phys. Leu. 163: 171 (1989)CrossRefGoogle Scholar
  77. D. Mukhopadhyay and D. Mukherjee, ibid. 177: 441 (1991).Google Scholar
  78. 40.
    D. Sinha, S. Mukhopadhyay, and D. Mukherjee, Chem. Phys. Lett. 129: 369 (1986).CrossRefGoogle Scholar
  79. 41.
    U. Kaldor, Phys. Rev. 38: 6013 (1988).CrossRefGoogle Scholar
  80. 42.
    U. Kaldor and S. Ben-Shlomo, in: “The Structure of Small Molecules and Ions”, R. Naaman and Z. Vager Z, eds., Plenum, New York (1988), p. 199.Google Scholar
  81. 43.
    U. Kaldor, in: “Condensed Matter Theories”, vol. 3, J. Arponen, R. F. Bishop, and M. Manninen, eds., Plenum, New York (1988), p. 83.Google Scholar
  82. 44.
    U.Kaldor, in: “Condensed Matter Theories”, vol. 4, J. Keller, ed., Plenum, New York (1989), p. 67.Google Scholar
  83. 45.
    U. Kaldor, in: “Aspects of Many-Body Effects in Molecules and Extended systems”, D. Mukherjee, ed., Springer Verlag, Berlin (1989), p. 155.Google Scholar
  84. 46.
    U. Kaldor, in: “Many-Body Methods in Quantum Chemistry”, U. Kaldor, ed., Springer Verlag, Berlin (1989), p. 199.Google Scholar
  85. 47.
    U. Kaldor, in: “Condensed Matter Theories”, Vol. 5, V. C. Aguillera-Navarro, ed., Plenum, New York (1990), p. 283.Google Scholar
  86. 48.
    S. Berkovic Ben-Shlomo and U. Kaldor, J. Chem. Phys. 92: 3680 (1990).CrossRefGoogle Scholar
  87. 49.
    U. Kaldor, Chem. Phys. 140: 1 (1990).CrossRefGoogle Scholar
  88. 50.
    U. Kaldor, Isr. J. Chem.,in press.Google Scholar
  89. 51.
    U.Kaldor, Chem. Phys. Lett. 170: 17 (1990).Google Scholar
  90. 52.
    U. Kaldor, Chem. Phys. Lett. 166: 599 (1990).CrossRefGoogle Scholar
  91. 53.
    U. Kaldor, Intern. J. Quantum Chem. S24: 291 (1990).CrossRefGoogle Scholar
  92. 54.
    U. Kaldor, unpublished.Google Scholar
  93. 55.
    I. Schmidt-Mink, W. Müller, and W. Meyer, Chem. Phys. 92: 263 (1985).CrossRefGoogle Scholar
  94. 56.
    P. Kusch and M. M. Hessel, J. Chem. Phys. 67: 586 (1977)CrossRefGoogle Scholar
  95. M. M. Hessel and C. R. Vidal, J. Chem. Phys. 70: 4439 (1979)CrossRefGoogle Scholar
  96. R. A. Bernheim, L. P. Gold, P. B. Kelly, T. Tipton, and D. K. Veirs, J. Chem. Phys. 76: 57 (1982)CrossRefGoogle Scholar
  97. J. Verges, R. Bacis, B. Barakat, P. Carrot, S. Churassy, and P. Crozet, Chem. Phys. Lett. 98: 203 (1983).CrossRefGoogle Scholar
  98. 57.
    M L. Olson and D. D. Konowalow, Chem. Phys. Lett. 39: 281 (1976)CrossRefGoogle Scholar
  99. M L. Olson and D. D. Konowalow, Chem. Phys. 21: 393 (1977)CrossRefGoogle Scholar
  100. M L. Olson and D. D. Konowalow, Chem. Phys. 22: 29 (1977)CrossRefGoogle Scholar
  101. D. D. Konowalow and M. L. Olson, J. Chem. Phys. 67: 590 (1977)CrossRefGoogle Scholar
  102. D. D. Konowalow and M. L. Olson, J. Chem. Phys. 71: 450 (1979)CrossRefGoogle Scholar
  103. D. D. Konowalow, M. E. Rosenkrantz, and D. S. Hochhauser, J. Mol. Spear. 99: 321 (1983)CrossRefGoogle Scholar
  104. D. D. Konowalow and P. S. Julienne, J. Chem. Phys. 72: 5817 (1980).Google Scholar
  105. 58.
    L. R. Kahn, T. H. Dunning, N. W. Winter, and W. A. Goddard, J. Chem. Phys. 66: 1135 (1977).CrossRefGoogle Scholar
  106. 59.
    H. Partridge, C. W. Bauschlicher, and P. E. M. Siegbahn, Chem. Phys. Lett. 97: 198 (1983).CrossRefGoogle Scholar
  107. 60.
    D. D. Konowalow and J. L. Fish, Chem. Phys. 77: 483 (1983)CrossRefGoogle Scholar
  108. D. D. Konowalow and J. L. Fish, Chem. Phys. 84: 463 (1984).CrossRefGoogle Scholar
  109. 61.
    H. Partridge, C.W. Bauschlicher, S. P. Walch, and B. Liu, J. Chem. Phys. 79: 1866 (1983).CrossRefGoogle Scholar
  110. 62.
    G. Jeung, J. Phys. B 16: 4289 (1983)CrossRefGoogle Scholar
  111. G. Jeung, Phys. Rev. A 35: 26 (1987).Google Scholar
  112. 63.
    E. Reinsch and W. Meyer, Phys. Rev. A 14: 915 (1976).CrossRefGoogle Scholar
  113. 64.
    P. Kusch and M.M. Hessel, J. Chem. Phys. 68: 2591 (1975)CrossRefGoogle Scholar
  114. M.E. Kaminsky, J. Chem. Phys. 66: 4951 (1977)Google Scholar
  115. J.B. Atkinson, J. Becker, and W. Demtroder, Chem. Phys. Lett. 87: 92 (1982)CrossRefGoogle Scholar
  116. J. Verges, C. Effantin, J. D’lncan, A. Topouzkhaian, and R.F. Barrow, Chem. Phys. Lett. 94: 1 (1983)CrossRefGoogle Scholar
  117. K.K. Verma, J.T. Bahns, A.R. Rajaei-Rizi, W.C. Stwalley, and W.T. Zemke, J. Chem. Phys. 78: 3599 (1983)CrossRefGoogle Scholar
  118. K.P. Huber and G. Herzberg. Herzberg, “Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules”, Van Nostrand Reinhold, New York, (1979).Google Scholar
  119. 65.
    D. K. Hsu, D.L. Monts and R.N. Zare, “Spectral Atlas of Nitrogen Dioxide 5530 to 6480 A”, Academic Press, New York (1978).Google Scholar
  120. 66.
    K. Uehara and H. Sasada, “High Resolution Spectral Atlas of Nitrogen Dioxide 559–597 nm”, Springer, Berlin (1985).CrossRefGoogle Scholar
  121. 67.
    J. L. Hardwick and J.C.D. Brand, Can. J. Phys. 54: 80 (1976).CrossRefGoogle Scholar
  122. 68.
    W.J. Lafferty and R.L. Sams, J. Molec. Spectroscopy 66: 478 (1977).CrossRefGoogle Scholar
  123. 69.
    K.M. Ervin, J. Ho and W.C. Lineberger, J. Phys. Chem. 92: 5405 (1988).CrossRefGoogle Scholar
  124. 70.
    Y. Morino, M. Tanimoto, S. Saito, E. Hirota, R. Awata and T. Tanaka, J. Mol. Spectroscopy 98: 331 (1983).CrossRefGoogle Scholar
  125. 71.
    G. Hirsch and R.J. Buenker, Can. J. Chem. 63: 1542 (1985).CrossRefGoogle Scholar
  126. 72.
    Y. Xie, R.D. Davy, B.F. Yates, C.P. Blahous, Y. Yamaguchi and H.F. Schaefer, Chem. Phys. 135: 179 (1989).CrossRefGoogle Scholar
  127. 73.
    M. E. Jacox, J. Phys. Chem. Ref. Data 18: 945 (1984).Google Scholar
  128. 74.
    R. Kato and J. Rolfe, J. Chem. Phys. 47: 1901 (1967).CrossRefGoogle Scholar
  129. 75.
    K.E. Gotberg and D.S. Tinti, Chem. Phys. 96: 109 (1985).CrossRefGoogle Scholar
  130. 76.
    R. E. Watson and T.F. Brodasky, J. Chem. Phys. 27: 683 (1957).CrossRefGoogle Scholar
  131. 77.
    E. Andersen and J. Simons, J. Chem. Phys. 66: 2427 (1977).CrossRefGoogle Scholar
  132. 78.
    N. C. Handy, J.D. Goddard and H.F. Schaefer, J. Chem. Phys. 71: 426 (1979)CrossRefGoogle Scholar
  133. R.J. Harrison and N.C. Handy, Chem. Phys. Lett. 97: 410 (1983).CrossRefGoogle Scholar
  134. 79.
    J. Baker, R.H. Nobes and L. Radom, J. Comp. Chem. 7: 349 (1986).CrossRefGoogle Scholar
  135. 80.
    S. Huzinaga, J. Chem. Phys. 42: 1293 (1965)CrossRefGoogle Scholar
  136. T. H. Dunning, J. Chem. Phys. 53: 2823 (1970).Google Scholar
  137. 81.
    S. J. Cyvin, “Molecular Vibrations and Mean Square Amplitudes”, Elsevier, Amsterdam (1968).Google Scholar
  138. 82.
    E. B. Wilson, J. C. Decius, and P. C. Cross, “Molecular Vibrations”, Dover, New York, (1981).Google Scholar
  139. 83.
    T. Amano and T. Amano, quoted in ref. 84.Google Scholar
  140. 84.
    Y. Yamagouchi, Y. Xie, R. S. Grey, and H. F. Schaefer, J. Chem. Phys. 92: 3683 (1990).CrossRefGoogle Scholar
  141. 85.
    A. Langseth, J. R. Nielsen, and J. O. Sorenson, Z. Phys. Chem. B 27: 100 (1934).Google Scholar
  142. 86.
    B. A. Thrush, Proc. Roy. Soc (London) A 235: 143 (1956).Google Scholar
  143. 87.
    A. E. Douglas and W.J. Jones, Can. J. Phys. 43, 2216 (1965).CrossRefGoogle Scholar
  144. 88.
    M Polak, M. Gruebele, and R.J. Saykally, J. Am. Chem. Soc. 109: 2884 (1987)CrossRefGoogle Scholar
  145. M. Polak, M. Gruebele, G.S. Peng, and R.J. Saykally, J. Chem. Phys. 89: 110 (1988).CrossRefGoogle Scholar
  146. 89.
    R. A. Beaman, T. Nelson, D.S. Richards, and D.W. Setser, J. Phys. Chem. 91: 6090 (1987).CrossRefGoogle Scholar
  147. 90.
    C. R. Brazier, P.F.Bernath, J.B.Burkholder, and C. J. Howard, J. Chem. Phys. 89: 1762 (1988).Google Scholar
  148. 91.
    R. Tian, J.C. Facelli, and J. Michl, J. Phys. Chem. 92: 4073 (1988)CrossRefGoogle Scholar
  149. R. Tian, V. Balaji, and J. Michl, J. Am. Chem. Soc. 110: 7225 (1988).CrossRefGoogle Scholar
  150. 92.
    R. T. Lamoureux and D.A. Dows, Spectrochim. Acta A 31: 1945 (1975).CrossRefGoogle Scholar
  151. 93.
    C. R. Brazier and P.F. Bernath, J. Chem. Phys. 88: 2112 (1988).CrossRefGoogle Scholar
  152. 94.
    E. Illenberger, P.B. Comita, J.I. Brauman, H.P. Fenzlaff, M. Heni, N. Heinrich, W. Koch, and G. Frenking, Ber. Bunsen-Ges. Phys. Chem. 89: 1026 (1985).CrossRefGoogle Scholar
  153. 95.
    P. Botschwina, J. Chem. Phys. 85: 4591 (1986).CrossRefGoogle Scholar
  154. 96.
    T. W. Archibald and J.R. Sabin, J. Chem. Phys. 55: 1821 (1971).CrossRefGoogle Scholar
  155. 97.
    L. Adamowicz, quoted in reference 90.Google Scholar
  156. 98.
    J. Baker, R.H. Nobes, and L. Radom, J. Comp. Chem. 7: 349 (1986).CrossRefGoogle Scholar
  157. 99.
    T. Ishiwara, I. Tanaka, K. Kawaguchi, and E. Hirota, J. Chem. Phys. 82: 2196 (1985)CrossRefGoogle Scholar
  158. K. Kawagouchi, E. Hirota, T. Ishiwata, and I. Tanaka, J. Chem. Phys. 93: 951 (1990).CrossRefGoogle Scholar
  159. 100.
    R. R. Friedel and S. P. Sander, J. Phys. Chem. 91: 2721 (1987).CrossRefGoogle Scholar
  160. 101.
    A. Weaver, D. W. Arnold, S. E. Bradforth, and D. M. Neumark, J. Chem. Phys. 94: 1740 (1991).CrossRefGoogle Scholar
  161. 102.
    P. E. M. Siegbahn, J. Comput. Chem. 6: 182 (1985).Google Scholar
  162. 103.
    R. C. Boehm and L. L. Lohr, J. Phys. Chem. 93: 3430 (1989).CrossRefGoogle Scholar
  163. 104.
    R. D. Davy and H. F. Schaefer, J. Chem. Phys. 91: 4410 (1989).CrossRefGoogle Scholar
  164. 105.
    B. Kim, B. L. Hammond, W. A. Lester, and H. S. Johnston, Chem. Phys. Lett. 168: 131 (1990).CrossRefGoogle Scholar
  165. 106.
    J. F. Stanton, J. Gauss, and R. J. Bartlett, J. Chem. Phys., in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Uzi Kaldor
    • 1
  1. 1.School of ChemistryTel Aviv UniversityTel AvivIsrael

Personalised recommendations