Skip to main content

The Complex-Scaling Coupled-Channel Methods for Atomic and Molecular Resonances in Intense External Fields

  • Chapter
Applied Many-Body Methods in Spectroscopy and Electronic Structure
  • 235 Accesses

Abstract

Resonance states are characterized by complex energies corresponding to poles of the resolvent operator (E-Ĥ)−1 in the complex-energy plane of a non-physical higher Riemann sheet. Numerous techniques have been developed for computing these poles. One of the most powerful techniques popularized in the last decade is the method known as the complex scaling (coordinate-rotation, complex-coordinate, or dilatation) transformation. 1,2 As a result of the complex scaling transformation, r → re, the eigenvalues corresponding to the bound states of Ĥ stay invariant, while the branch cuts associated with the continuous spectrum of Ĥ are rotated about their respective thresholds by an angle −2α (assuming 0<α<π/2), exposing the complex resonance states in appropriate strips of the complex energy plane. A crucial point from the computational point of view is that the eigen-functions associated with the complex-scaling resonance wave functions are localized, i.e. square integrable. The square integrability led to the extension of well-established bound-state techniques to the determination of resonance energies (ER) and widths (Г) of metastable states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Balslev and J.M. Combes, Commun. Math. Phys. 22: 280 (1971)

    Article  Google Scholar 

  2. A. Aguilar and J.M. Combes, Commun. Math. Phys. 22: 265 (1971)

    Article  Google Scholar 

  3. B. Simon, Ann. Math. 97: 247 (1973).

    Article  Google Scholar 

  4. Proceedings of the 1978 Sanibel Workshop on Complex Scaling, Intern. J. Quantum Chem. 14: 343–542 (1978).

    Google Scholar 

  5. P. Agostini, A. Antonetti, P. Breger, M. Crance, A. Migus, H.G. Muller, and G. Petite, J. Phys. B22: 1971 (1989).

    CAS  Google Scholar 

  6. R.R. Freeman, P.H. Bucksbaum, H. Milchberg, S. Darrack, D. Schumacher, and M.E. Geusic, Phys. Rev. Lett. 59: 1092 (1987).

    Article  CAS  Google Scholar 

  7. S.I. Chu and W.P. Reinhardt, Phys. Rev. Lett. 39: 1195 (1977)

    Article  CAS  Google Scholar 

  8. A. Maquet, S.I. Chu, and W.P. Reinhardt, Phys. Rev. A27: 2946 (1983).

    Article  CAS  Google Scholar 

  9. S.I. Chu, Adv. At. Mol. Phys. 21: 197 (1985).

    CAS  Google Scholar 

  10. S.I. Chu, K. Wang, and E. Layton, J. Opt. Soc. Am. B7: 425 (1990).

    Article  CAS  Google Scholar 

  11. J.H. Shirley, Phys. Rev. 138: B979 (1965).

    Article  Google Scholar 

  12. For a recent review on various generalizations of Floquet theories and techniques for the treatment of intense-field multiphoton and nonlinear optical processes, see, S.I. Chu, Adv. Chem. Phys. 73: 739 (1989).

    Google Scholar 

  13. S.I. Chu and J. Cooper, Phys. Rev. A32: 2769 (1985).

    Article  CAS  Google Scholar 

  14. P. Avan, C. Cohen-Tannoudji, J. Dupont-Roc, and C. Fabre, J. Phys. (Paris) 37: 993 (1976)

    Article  Google Scholar 

  15. L. Hollberg and J.L. Hall, Phys. Rev. Lett. 53: 230 (1984).

    Article  CAS  Google Scholar 

  16. S.I. Chu, Chem. Phys. Lett. 58: 462 (1978).

    Article  CAS  Google Scholar 

  17. J. Avron, I. Herbst, and B. Simon, Duke Math. J. 45: 847 (1978).

    Article  Google Scholar 

  18. S.K. Bhattacharya and S.I. Chu, J. Phys. B16: L471 (1983).

    CAS  Google Scholar 

  19. S.K. Bhattacharya and S.I. Chu, J. Phys. B18: L275 (1985).

    CAS  Google Scholar 

  20. R.H. Garstang, Rep. Prog. Phys. 40: 105 (1977).

    CAS  Google Scholar 

  21. G. Wunner, H. Herold, and H. Ruder, J. Phys. B16: 2973 (1983).

    Google Scholar 

  22. A. Holle, J. Main, G. Wiebusch, H. Rottke, and K.H. Welge, Phys. Rev. Lett. 61: 161 (1988).

    Article  CAS  Google Scholar 

  23. C.H. Iu, G.R. Welch, M.M. Kash, L. Hsu, and D. Kleppner, Phys. Rev. Lett. 63: 1133 (1989).

    Article  CAS  Google Scholar 

  24. S.I. Chu, Chem. Phys. Lett. 167: 155 (1990).

    Article  CAS  Google Scholar 

  25. C.C. Marston and G.G. Balint-Kurti, J. Chem. Phys. 91: 3571 (1989).

    Article  CAS  Google Scholar 

  26. K.K. Datta and S.I. Chu, Chem. Phys. Lett. 87: 357 (1982).

    Article  CAS  Google Scholar 

  27. O. Atabek and R. Lefebvre, Chem. Phys. Lett. 84: 233 (1981).

    Article  CAS  Google Scholar 

  28. A. Carrington and J. Buttenshaw, Mol. Phys. 44: 267 (1981).

    Article  CAS  Google Scholar 

  29. S.I. Chu, C. Laughlin, and K.K. Datta, Chem. Phys. Lett. 98: 476 (1983).

    Article  CAS  Google Scholar 

  30. C. Laughlin, K.K. Datta, and S.I. Chu, J. Chem. Phys. 85: 1403 (1986).

    Article  CAS  Google Scholar 

  31. C. Cornaggia, D. Normand, J. Morellec, G. Mainfray, and C. Manus, Phys. Rev. A34: 207 (1986).

    Article  CAS  Google Scholar 

  32. T.S. Luk and C.K. Rhodes, Phys. Rev. A38: 6180 (1988).

    Article  CAS  Google Scholar 

  33. P.H. Bucksbaum, A. Zavriyev, H.G. Muller, and D.W. Schumacher, Phys. Rev. Lett. 64: 1883 (1990).

    Article  CAS  Google Scholar 

  34. J.O. Hirschfelder, R.E. Wyatt, and R.D. Coalson, ed., “Lasers, Molecules, and Methods,” Wiley, New York, Adv. Chem. Phys. 73:1–978 (1989).

    Google Scholar 

  35. S.I. Chu, J. Chem. Phys. 75: 2215 (1981).

    Article  CAS  Google Scholar 

  36. A. Dalgarno and J.T. Lewis, Proc. Roy. soc. A233: 70 (1955).

    Article  CAS  Google Scholar 

  37. S.I. Chu, J. Chem. Phys. (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chu, SI. (1992). The Complex-Scaling Coupled-Channel Methods for Atomic and Molecular Resonances in Intense External Fields. In: Mukherjee, D. (eds) Applied Many-Body Methods in Spectroscopy and Electronic Structure. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9256-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9256-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9258-4

  • Online ISBN: 978-1-4757-9256-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics