Advertisement

Recent Developments in the Calculation of Molecular Auger Spectra

  • F. Tarantelli
  • A. Sgamellotti
  • L. S. Cederbaum

Abstract

The spectroscopy and dynamics of doubly charged molecular cations in the gas phase are nowadays intensively studied by means of several complementary experimental techniques. In the oldest exploited class of experiments dications are produced by decay of core ionized molecules via electron emission. This is the basis of Auger electron spectroscopy (AES) [1], where the number of emitted electrons is measured as a function of their kinetic energy. In recent developments, vibrationally resolved Auger spectra have been obtained [2–4] and additional information on the nature of the dicationic states populated can be gained via the coincidence detection of Auger electrons and the sufficiently long-lived dications or their fragmentation products [5,6]. In a second important class of techniques the doubly charged cations are produced directly from their neutral parent species. In double charge transfer spectroscopy [7] this is achieved by collision of protons impinging on the target molecules. The one-step two-electron removal channel can be identified by its specific pressure dependence and the energy loss of the detected H- ions is measured. Dicationic species can also be obtained by electron impact, and their lowest lying states observed by translational energy loss spectroscopy [8], or by collisional charge stripping from singly charged precursors [9]. Finally, in recent years, new powerful techniques have been successfully established, [10–12] based on direct double photoionization from synchrotron radiation, followed by the coincidence detection of photoelectrons and/or photoions (either long-lived dications or charged fragments).

Keywords

Auger Spectrum Double Ionization Hole Localization Pole Strength Gaussian Convolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    a) K.Siegbahn, C.Nordling, G.Johansson, J.Hedman, P.F.Heden, K.Hamrin, U.Gelius, T.Bergmark, L.O.Werme, R.Manne and Y.Baer, “ESCA Applied to Free Molecules” (North-Holland, Amsterdam, 1971 ); (b) M.Thompson, M.D.Baker, A.Christie and J.F.Tyson, “Auger Electron Spectroscopy” ( Wiley, New York, 1985 ).Google Scholar
  2. [2] N.Correia, A.Flores-Riveros, H.Agren, K.Helenelund, L.Asplund and U.Gelius, J.Chem.Phys. 83, 2035 (1985).
    See also: T.X.Carroll and T.D.Thomas, J.Chem.Phys. 86, 5221 (1987).CrossRefGoogle Scholar
  3. [3]
    L.Karlsson, P.Baltzer, S.Svensson and B.Wannberg, Phys.Rev.Lett. 24, 2473 (1988); S.Svensson, L.Karlsson, P.Baltzer, M.P.Keane and B.Wannberg, Phys.Rev.A 40, 4369 (1989).CrossRefGoogle Scholar
  4. [4]
    A.Cesar, H.Agren, A.Naves de Brito, S.Svensson, L.Karlsson, M.P.Keane, B.Wannberg, P.Baltzer, P.G.Fournier and J.Fournier, J.Chem.Phys. 93, 918 (1990).CrossRefGoogle Scholar
  5. [5]
    W.Eberhardt, E.W.Plummer, I.W.Lyo, R.Reininger, R.Carr, W.K.Ford and D. Sondericker, Aust.J.Phys. 39, 633 (1986).CrossRefGoogle Scholar
  6. [6]
    D.A.Lapiano-Smith, C.I.Ma, K.T.Wu and D.M.Hanson, J.Chem.Phys. 90, 2162 (1989).CrossRefGoogle Scholar
  7. [7]
    J.Appell, J.Durup, F.C.Fehsenfeld and P.G.Fournier, J.Phys.B 6, 197 (1973); P.G. Fournier, J.Fournier, F.Salama, D.Stärck, S.D.Peyerimhoff and J.H.D.Eland, Phys.Rev.A 34, 1657 (1986).Google Scholar
  8. [8]
    See, e.g., M.Hamdan, S.Mazumdar, V.R.Marathe, C.Badrinathan, A.G.Brenton and D.Mathur, J.Phys.B 21, 2571 (1988) and references therein.Google Scholar
  9. [9]
    R.G.Cooks, T.Ast and J.H.Beynon, Int.J.Mass Spectrom.Ion Phys. 11, 490 (1973); D.Mathur and C.Bandrinathan J.Phys.B 20, 1517 (1987) and references therein.Google Scholar
  10. [10]
    G.Dujardin, S.Leach, O.Dutuit, P.M.Guyon and M.Richard-Viard, Chem.Phys. 88, 339 (1984); G.Dujardin, L.Hellner, D.Winkoun and M.J.Besnard, Chem.Phys. 105, 291 (1986).CrossRefGoogle Scholar
  11. [11]
    P.Lablanquie, I.Nenner, P.Millié, P.Morin, J.H.D.Eland, M.-J.Hubin-Franskin and J.Delwiche, J.Chem.Phys. 82, 2951 (1985); P.Lablanquie, J.H.D.Eland, I.Nenner, P.Morin, J.Delwiche and M.-J.Hubin-Franskin, Phys.Rev.Lett. 58, 992 (1987); J.H.D.Eland, S.D.Price, J.C.Cheney, P.Lablanquie, I.Nenner and P.G.Fournier, Phil.Trans.R.Soc.Lond.A 324, 247 (1988).Google Scholar
  12. [12]
    P.Lablanquie, J.Delwiche, M.-J.Hubin-Franskin, I.Nenner, P.Morin, K.Ito, J.H.D.Eland, J.-M.Robbe, G.Gandara, J.Fournier and P.G.Fournier, Phys.Rev.A 40, 5673 (1989).CrossRefGoogle Scholar
  13. [13]
    K.Faegri, jr. and H.P.Kelly, Phys.Rev.A 19, 1649 (1979); M.Higashi, E.Hiroike and T.Nakajima, Chem.Phys. 68, 377 (1982), Chem.Phys. 85, 133 (1984); F.P.Larkins and J.A.Richards, Aust.J.Phys. 39, 809 (1986).CrossRefGoogle Scholar
  14. [14]
    V.Carravetta and H.Agren, Phys.Rev.A 35, 1022 (1987); R.Colle and S.Simonucci, Phys.Rev.A 42, 3913 (1990); K.Zähringer, H.-D.Meyer and L.S.Cederbaum, “Molecular scattering wavefunctions for Auger decay rates: the Auger spectrum of hydrogen fluoride”, Phys.Rev.A (submitted for publication).Google Scholar
  15. [15]
    A.Cesar, H.Agren and V.Carravetta, Phys.Rev.A 40, 187 (1989).CrossRefGoogle Scholar
  16. [16]
    H.Agren, J.Chem.Phys. 75, 1267 (1981).CrossRefGoogle Scholar
  17. [17] (a) L.S.Cederbaum and W.Domcke, Adv.Chem.Phys. 36, 205 (1977); (b)
    W.von Niessen, J. Schirmer and L.S.Cederbaum, Comput.Phys.Rep. 1, 57 (1984); (c) L.S.Cederbaum, Int.J.Quant.Chem.Symp. 24, 393 (1990).Google Scholar
  18. [18]
    J.Schirmer and A.Barth, Z.Phys.A 317, 267 (1984).CrossRefGoogle Scholar
  19. [19]
    A.Tarantelli and L.S.Cederbaum, Phys.Rev.A 39, 1656 (1989).CrossRefGoogle Scholar
  20. [20]
    A.Tarantelli and L.S.Cederbaum, Phys.Rev.A 39, 1639 (1989).CrossRefGoogle Scholar
  21. [21]
    J.Schirmer, Phys.Rev.A 43, 4647 (1991).CrossRefGoogle Scholar
  22. [22]
    F.Tarantelli, A.Tarantelli, A.Sgamellotti, J.Schirmer and L.S.Cederbaum, Chem.Phys.Lett. 117, 577 (1985); F.Tarantelli, A.Tarantelli, A.Sgamellotti, J.Schirmer and L.S.Cederbaum, J.Chem.Phys. 83, 4683 (1985); F.Tarantelli, J.Schirmer, A.Sgamellotti and L.S.Cederbaum, Chem.Phys.Lett. 122, 169 (1985).Google Scholar
  23. [23]
    F.Tarantelli, A.Sgamellotti, L.S.Cederbaum and J.Schirmer, J.Chem.Phys. 86, 2201 (1987).CrossRefGoogle Scholar
  24. [24]
    E.Ohrendorf, H.Köppel, L.S.Cederbaum, F.Tarantelli and A.Sgamellotti, J.Chem.Phys. 91, 1734 (1989).CrossRefGoogle Scholar
  25. [25]
    E.Ohrendorf, F.Tarantelli and L.S.Cederbaum, J.Chem.Phys. 92, 2984 (1990).CrossRefGoogle Scholar
  26. [26]
    F.Tarantelli, A.Sgamellotti and L.S.Cederbaum, J.Chem.Phys. 94, 523 (1991).CrossRefGoogle Scholar
  27. [27] (a) C.-M.Liegener, Chem.Phys.Lett. 90, 188 (1982); (b)
    C.-M.Liegener, Chem.Phys. Letters 106, 201 (1984); (c) C.-M.Liegener, Chem.Phys. 92, 97 (1985)CrossRefGoogle Scholar
  28. [28]
    R.L.Graham and D.L.Yeager, J.Chem.Phys. 94, 2884 (1991).CrossRefGoogle Scholar
  29. [29]
    J.Schirmer, Phys.Rev.A 26, 2395 (1982); J.Schirmer, L.S.Cederbaum and O.Walter, Phys.Rev.A 28, 1237 (1983).CrossRefGoogle Scholar
  30. [30]
    A.L.Fetter and J.D.Walecka, “Quantum Theory of Many-Particle systems” ( McGraw-Hill, New York, 1971 ).Google Scholar
  31. [31]
    R.R.Rye and J.E.Houston, J.Chem.Phys. 78, 4321 (1983).CrossRefGoogle Scholar
  32. [32]
    J.V.Ortiz, J.Chem.Phys. 81, 5873 (1984).CrossRefGoogle Scholar
  33. [33]
    M.Cini, F.Maracci and R.Platania, J.Electr.Spectr.Rel.Phen. 41, 37 (1986).CrossRefGoogle Scholar
  34. [34]
    V.Pellizzari, F.Tarantelli, A.Sgamellotti and L.S.Cederbaum, to be published.Google Scholar
  35. [35]
    L.S.Cederbaum, F.Tarantelli, A.Sgamellotti and J.Schirmer, J.Chem.Phys. 85, 6513 (1986); 86, 2168 (1987).Google Scholar
  36. [36]
    R.R.Rye, D.R.Jennison and J.E.Houston, J.Chem.Phys. 73, 4867 (1980); T.D. Thomas and P.Weightman, Chem.Phys.Lett. 81, 325 (1981); P.Weightman, T.D. Thomas and D.R.Jennison, J.Chem.Phys. 78, 1652 (1983).CrossRefGoogle Scholar
  37. [37]
    J.A.Kelber, D.R. Jennison and R.R.Rye, J.Chem.Phys. 75, 652 (1981);CrossRefGoogle Scholar
  38. [38]
    W.Eberhardt, E.W.Plummer, C.T.Chen, W.K.Ford, Aust.J.Phys. 39, 853 (1986).CrossRefGoogle Scholar
  39. [39]
    L.S.Cederbaum, P.Campos, F.Tarantelli and A.Sgamellotti, “Bandshape and vibrational structure in Auger spectra: theory and application to carbon monoxide”, J.Chem.Phys. (submitted for publication).Google Scholar
  40. [40]
    F.Kaspar, W.Domcke and L.S.Cederbaum, Chem.Phys. 44, 33 (1979).CrossRefGoogle Scholar
  41. [41]
    F.K.Gel’mukhanov, L.N.Mazalov, A.V.Nikolaev, A.V.Kondratenko, V.G.Smirnii, P.I.Wadash and A.P.Sadovskii, Dokl.Akad.Nauk SSSR 225, 597 (1975); F.K.Gel’mukhanov, L.N.Mazalov, and A.V.Kondratenko, Chem.Phys.Letters 46, 133 (1977).CrossRefGoogle Scholar
  42. [42]
    H.Köppel, W.Domcke and L.S.Cederbaum, Adv.Chem.Phys. 57, 59 (1984).CrossRefGoogle Scholar
  43. [43]
    H.C.Longuet-Higgins, U.Öpik, M.H.L.Pryce and R.A.Sack, Proc.Roy.Soc.(London) A244, 1 (1958); R.Englman, “The Jahn-Teller Effect” ( Wiley, New York, 1972 ).Google Scholar
  44. [44]
    G.Wentzel, Z.Physik 43, 521 (1927).Google Scholar
  45. [45]
    R.Manne and H.Agren, Chem.Phys. 93, 201 (1985).CrossRefGoogle Scholar
  46. [46]
    As originally suggested in H.Siegbahn, L.Asplund, P.Kelfve, Chem.Phys.Lett. 35, 330 (1975).CrossRefGoogle Scholar
  47. [47]
    T.A.Green and D.R.Jennison, Phys.Rev.B 36, 6112 (1987).CrossRefGoogle Scholar
  48. [48]
    T.H.Dunning, J.Chem.Phys. 53, 2823 (1970); R.Ahlrichs and P.R.Taylor, J.Chim. Phys. 78, 315 (1981).Google Scholar
  49. [49]
    C.Benoit and J.A.Horsley, Mol.Phys. 30, 557 (1975).CrossRefGoogle Scholar
  50. [50]
    R.R.Rye, T.E.Madey, J.E.Houston and P.H.Holloway, J.Chem.Phys. 69, 1504 (1978).CrossRefGoogle Scholar
  51. [51]
    D.R.Jennison, Chem.Phys.Letters, 69, 435 (1980).CrossRefGoogle Scholar
  52. [52]
    F.Tarantelli, A.Sgamellotti and L.S.Cederbaum, to be published.Google Scholar
  53. [53]
    M.Thompson, P.A.Hewitt and D.S.Wooliscroft, Anal.Chem. 48, 1336 (1976).CrossRefGoogle Scholar
  54. [54]
    R.Spohr, T.Bergmark, N.Magnusson, L.O.Werme, C.Nordling and K.Siegbahn, Phys.Scr. 2, 31 (1970).CrossRefGoogle Scholar
  55. [55]
    A.Denis, J.Langlet and J.P.Malrieu, Theor.Chim.Acta, 38, 49 (1975); L.S.Cederbaum and W.Domcke, J.Chem.Phys. 66, 5084 (1977).CrossRefGoogle Scholar
  56. [56]
    W.E.Moddeman, T.A.Carlson, M.O.Krause, B.P.Pullen, W.E.Bull and G.K. Schweitzer, J.Chem.Phys. 55, 2317 (1971).CrossRefGoogle Scholar
  57. [57]
    L.Ungier and T.D.Thomas, J.Chem.Phys. 82, 3146 (1985).CrossRefGoogle Scholar
  58. [58]
    H.Agren and H.Siegbahn, Chem.Phys.Letters 72, 498 (1980).CrossRefGoogle Scholar
  59. [59]
    I.H.Hillier and J.Kendrick, Mol.Phys. 31, 849 (1976); D.R.Jennison, J.A.Kelber and R.R.Rye, Chem.Phys. Letters 77, 604 (1981); G.E.Laramore, Phys.Rev.A 29, 23 (1984).Google Scholar
  60. [60]
    M.Larsson, B.J. Olsson and P.Sigray, Chem.Phys. 139 457 (1989), and references therein.Google Scholar
  61. [61]
    V.R.Marathe and D.Mathur, Chem.Phys.Letters 163, 189 (1989).CrossRefGoogle Scholar
  62. [62]
    T.H.Dunning, J.Chem.Phys. 55, 716 (1971).CrossRefGoogle Scholar
  63. [63]
    K.P.Huber and G.Herzberg, “Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules” ( Van Nostrand Reinhold, New York, 1979 ).Google Scholar
  64. [64]
    M.Tronc, G.C.King, R.C.Bradford and F.H.Read, J.Phys.B 9, L555 (1976).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • F. Tarantelli
    • 1
  • A. Sgamellotti
    • 1
  • L. S. Cederbaum
    • 2
  1. 1.Dipartimento di ChimicaUniversità di PerugiaPerugiaItaly
  2. 2.Theoretische ChemieUniversität HeidelbergHeidelbergGermany

Personalised recommendations