Dilemmas in the Choice of Model Spaces Supporting Magnetic Hamiltonians

  • Jean Paul Malrieu


Heisenberg Hamiltonians(1) were first introduced as phenomenological Hamiltonians to reproduce the energy splittings between the electronic states of polyradical systems, i.e. in problems involving several unpaired electrons. The foundation of such Hamiltonians has been clearly established as effective Hamiltonians (2–8), in the sense of Quasi Degenerate Perturbation Theory(9–10), concerning special types of problems and a special choice of the model space (11). The concerned systems are half-filled band problems namely, pn e- in pn atomic (or local) degenerate orbitals (AO), on n centers. The band must be unique and half-filled since one might put up to 2np e in pn orbitals. The model space is uniquely defined as spanned by all the determinants in which each AO bears one and only one electron, which means that all the determinants have the same space part; then the unique degree of freedom in the spin distribution and the effective hamiltonian must be a spin-only Hamiltonian. The first purpose of this paper is to discuss the choice of that model space, showing that even for half-filled bands it lacks generality and faces numerous fundamental problems.


Model Space Target Space Atomic Orbital Double Occupancy Space Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    C. Herring, Magnetism 2B, 1 (1962)Google Scholar
  2. 2).
    B.H. Brandow, in Effective Interactians and Operators in Nuclei (Ed. B.R. Barret) Lecture Notes in Physics Vol. 40, p. 1, Springer Berlin (1975)Google Scholar
  3. 3).
    I. Lindgren and J. Morrison, Atomic Many-Body Theory, p. 200, Springer, Berlin (1982)Google Scholar
  4. 4).
    H. Feschbach, Ann. Rev. Nucl. Sci. B, 49 (1958); Ann. Phys., N.Y., J, 357 (1958); ibid., 19, 287 (1962)Google Scholar
  5. 5).
    P.O. Lowdin, J. Math. Phys. 3, 969 (1962)CrossRefGoogle Scholar
  6. 6).
    C. Bloch, Nucl. Phys. 6, 329 (1962)Google Scholar
  7. 7).
    J. des Cloizeaux, Nucl. Phys. 20, 321 (1960)CrossRefGoogle Scholar
  8. 8).
    Ph. Durand and J.P. Malrieu, in Ab-initio Methods in Quantum Chemistry (Ed. K.P. Lawley) Vol. 1, p. 352, J. Wiley, New-York (1987)Google Scholar
  9. 9).
    J.H. Van Vleck, Phys. Rev. 33, 467 (1929)CrossRefGoogle Scholar
  10. 10).
    K. Suzuki and R. Okamoto, Progr. Theor. Phys., 72, 534 (1984)CrossRefGoogle Scholar
  11. 11).
    P.W. Anderson, Solid State Phys. 14, 99 (1963)CrossRefGoogle Scholar
  12. 12).
    J.P. Malrieu, Ph. Durand and J.P. Daudey, J. Phys. A, Math. Gen. 18, 809 (1985)CrossRefGoogle Scholar
  13. 13).
    S. Evangelisti, Ph. Durand and J.L. Heully, Phys. Rev. A. 43, 1258 (1991)CrossRefGoogle Scholar
  14. 14).
    A.V. Zaitsevskii and A.I. Dement’ev, J. Phys. B 23, L517 (1990)CrossRefGoogle Scholar
  15. 15).
    J.L. Heully, S. Evangelisti and Ph. Durand, Int. J. Quant. Chem., in pressGoogle Scholar
  16. 16).
    S. Koch, Theor. Chini. Acta, in pressGoogle Scholar
  17. 17).
    J.P. Malrieu and D. Maynau, J. Amer. Chem. Soc. 104, 3021, 3029 (1982)Google Scholar
  18. 18).
    M. Said, D. Maynau, J.P. Malrieu and M.A. Garcia-Bach, J. Amer. Chem. Soc. 106, 571 (1984)CrossRefGoogle Scholar
  19. 19).
    D. Maynau, M.A. Garcia-Bach and J.P. Malrieu, J. Physique 47, 207 (1986)CrossRefGoogle Scholar
  20. 20).
    A. Pelegatti and J.P. Malrieu, J. Chini. Phys. 87, 941 (1990)Google Scholar
  21. 21).
    M. Said, D. Maynau and J.P. Malrieu, J. Amer. Chem. Soc. 106, 580 (1984)CrossRefGoogle Scholar
  22. 22).
    M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963)CrossRefGoogle Scholar
  23. 23).
    P. Horsch and P. Fulde, Z. Physik B 36, 23 (1979)CrossRefGoogle Scholar
  24. 24).
    G. Stolhoff and P. Fulde, J. Chem. Phys. 73, 4548 (1980)CrossRefGoogle Scholar
  25. 25).
    B. Oujia, M.B. Lepetit, D. Maynau and J.P. Malrieu, Phys. Rev. A 39, 3289 (1989)CrossRefGoogle Scholar
  26. 26).
    T.A. Kaplan, P. Horsh and P. Fulde, Phys. Rev. Lett. 49, 889 (1982)CrossRefGoogle Scholar
  27. 27).
    B. Oujia, M.B. Lepetit and J.P. Malrieu, Chem. Phys. Lett. 158, 559 (1989)CrossRefGoogle Scholar
  28. 28).
    M.A. Garcia-Bach, P. Blaise and J.P. Malrieu, to be publishedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Jean Paul Malrieu
    • 1
  1. 1.Laboratoire de Physique QuantiqueUniversité Paul SabatierToulouse CedexFrance

Personalised recommendations