Skip to main content

Optical Parametric Processes in Crystalline Molecular Layered Confinement Structures: Second Harmonic Generation in Microcavities

  • Chapter
Applications of Photonic Technology 2

Abstract

From both, classical electromagnetism and quantum electrodynamics point of view, there is a constantly growing interest with respect to nonlinear (NL) optics (NLO) in confined environments. This interest originates from fundamental as well as from applied motivations. The purpose of the present article is to provide theoretical and experimental evidences that suggest the manifestation of non classical effects that enhance optical parametric processes in electromagnetic confinement structures. As for the present book, our aim is to bridge a part of the gap between basic research and technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. De Martini, Vacuum confinement effects on molecular dynamics in a microscopic cavity, Physica Scripta 21:58 (1988).

    Article  Google Scholar 

  2. S. Haroche and D. Kleppner, Cavity quantum electrodynamics, Physics Today January 1989:24 (1989).

    Article  Google Scholar 

  3. F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini and R. Loudon, Spontaneous emission in the optical microscopic cavity, Phys. Rev. A 43:2480 (1991).

    Article  Google Scholar 

  4. G. Björk, S. Machida, Y. Yamamoto and K. Igeta, Modification of spontaneous emission rate in planar dielectric microcavity stuctures, Phys. Rev. A 44:669 (1991).

    Article  Google Scholar 

  5. S. Haroche, Cavity quantum electrodynamics, in: Systèmes Fondamentaux en Optique Quantique: Les Houches, Session Uli, 1990, J. Dalibard, J. M. Raymond, and J. Zinn-Justin, eds., Elsevier Science Publishers B. V., (1992).

    Google Scholar 

  6. Y. Yamamoto, S. Machida and G. Björk, Micro-cavity semiconductor lasers wih controlled spontaneous emission, Opt. and Quant. Electron. 24:S215 (1992).

    Article  Google Scholar 

  7. H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E P. Ippen and M. Suzuki, Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities, Opt. and Quant. Electron. 24:S215 (1992).

    Article  Google Scholar 

  8. G. Rempe, Atoms in an optical cavity: quantum electrodynamics in confined space, Contemporary Physics 34:119 (1993).

    Article  Google Scholar 

  9. S. W. Koch, F. Jahnke and W. W. Chow, Physics of semiconductor microcavity lasers, Semicond. Sci. Technol. 10:739 (1995).

    Article  Google Scholar 

  10. Y. Yamamoto and R. E Slusher, Optical process in microcavity, Physics Today June 1993:66 (1993)

    Article  Google Scholar 

  11. F. De Martini and G. R. Jocobovitz, Anomalous spontaneous-stimulated-decay phase transition and zero-threshlod laser action in a microscopic cavity, Phys. Rev. Lett. 60:1711 (1988).

    Article  Google Scholar 

  12. F. De Martini, F. Cairo, P. Mataloni and F. Verzegnassi, Thresholdless microlaser, Phys. Rev. A 46:4220(1992).

    Article  Google Scholar 

  13. R. Loudon, The Quantum Theory of Light, Oxford University Press, Oxford, (1992).

    Google Scholar 

  14. P. W. Milonni, The Quantum Vacuum, Academic Press, London, (1994).

    Google Scholar 

  15. M. Udea and N. Imoto, Anomalous commutation relation and modified spontaneous emission inside a microcavity, Phys. Rev. A 50:89 (1994).

    Article  Google Scholar 

  16. W. H. Louisell, A. Yariv and A. E. Siegman, Quantum fluctuations and noise in parametric process. I., Phys. Rev. 124:1646 (1961).

    Article  MATH  Google Scholar 

  17. To be submitted to The Physical Review.

    Google Scholar 

  18. S. Gauvin and J. Zyss, Growth of organic crystalline thin films, their optical characterization and application to non-linear optics, J. Crystal Growth (Proceedings of the International Conference on Crystal Growth XI, in press).

    Google Scholar 

  19. O. S. Heavens, Optical Properties of Thin Films, Dover, New York, (1965).

    Google Scholar 

  20. P. Yeh, Optical Waves in Layered Media, John Wiley & Sons, New York, (1988).

    Google Scholar 

  21. Sh. A. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems, Editions Frontières, Orsay, (1992).

    Google Scholar 

  22. D. S. Chemla and J. Zyss (Eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, Orlando, (1987)

    Google Scholar 

  23. J. Zyss (Ed), Molecular Nonlinear Optics: Materials, Physics and Devices, Academic Press, Boston, (1995).

    Google Scholar 

  24. B. F. Levine, C. G. Bethea, C. D. Thurmond, R. T. Lynch and J. L. Bernstein, An organic crystal with an exceptionally large optical second-harmonic coefficient: 2-methyl-4-nitroaniline, J. Appl. Phys. 50:2523 (1979).

    Article  Google Scholar 

  25. G. F. Lipscomb, A. F. Garito and R. S. Narang, An exceptionally large linear electro-optic effect in the organic solid MNA, J. Chem. Phys. 75:1509 (1981).

    Article  Google Scholar 

  26. R. Morita, N. Ogasawara, S. Umegaki, R. Ito, Refractive indices of 2-methyl-4-nitroaniline (MNA), J. Appl Phys. 26:L1711 (1987).

    Google Scholar 

  27. To be submitted to The Journal of Optical Society of America B.

    Google Scholar 

  28. D. S. Bethune, Optical harmonic generation and mixing in multilayer media: analysis using opical transfer matrix techniques, J. Opt. Soc. Am. B 6:910 (1989).

    Article  Google Scholar 

  29. N. Hashizume, M. Ohashi, T. Kondo and R. Ito, Optical harmonic generation in multilayered structures: a comprehensive analysis, J. Opt. Soc. Am. B 12:1894 (1995).

    Article  Google Scholar 

  30. J. A. Armstrong, N. Bloembergen, J. Ducuing and P. S. Pershan, Interactions between light waves in a nonlinear dielectric, Phys. Rev. 127:1918 (1962).

    Article  Google Scholar 

  31. N. Bloembergen, P. S. Pershan, Light waves at the boundary of nonlinear media, Phys. Rev. 128:606(1962).

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Morita, T. Kondo, Y. Kaneda, A. Sugihashi, N. Ogasawara, S. Umegaki, R. Ito, Dispersion of the second-order nonlinear optical coefficient d 11 of 2-methyl-4-nitroaniline (MNA), J. J. Appl Phys. 27.L1131 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gauvin, S., Zyss, J. (1997). Optical Parametric Processes in Crystalline Molecular Layered Confinement Structures: Second Harmonic Generation in Microcavities. In: Lampropoulos, G.A., Lessard, R.A. (eds) Applications of Photonic Technology 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9250-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9250-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9252-2

  • Online ISBN: 978-1-4757-9250-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics