Optical Parametric Processes in Crystalline Molecular Layered Confinement Structures: Second Harmonic Generation in Microcavities

  • Serge Gauvin
  • Joseph Zyss


From both, classical electromagnetism and quantum electrodynamics point of view, there is a constantly growing interest with respect to nonlinear (NL) optics (NLO) in confined environments. This interest originates from fundamental as well as from applied motivations. The purpose of the present article is to provide theoretical and experimental evidences that suggest the manifestation of non classical effects that enhance optical parametric processes in electromagnetic confinement structures. As for the present book, our aim is to bridge a part of the gap between basic research and technological applications.


Second Harmonic Generation Cavity Mode Parametric Fluorescence Conversion Yield Stop Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. De Martini, Vacuum confinement effects on molecular dynamics in a microscopic cavity, Physica Scripta 21:58 (1988).CrossRefGoogle Scholar
  2. 2.
    S. Haroche and D. Kleppner, Cavity quantum electrodynamics, Physics Today January 1989:24 (1989).CrossRefGoogle Scholar
  3. 3.
    F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini and R. Loudon, Spontaneous emission in the optical microscopic cavity, Phys. Rev. A 43:2480 (1991).CrossRefGoogle Scholar
  4. 4.
    G. Björk, S. Machida, Y. Yamamoto and K. Igeta, Modification of spontaneous emission rate in planar dielectric microcavity stuctures, Phys. Rev. A 44:669 (1991).CrossRefGoogle Scholar
  5. 5.
    S. Haroche, Cavity quantum electrodynamics, in: Systèmes Fondamentaux en Optique Quantique: Les Houches, Session Uli, 1990, J. Dalibard, J. M. Raymond, and J. Zinn-Justin, eds., Elsevier Science Publishers B. V., (1992).Google Scholar
  6. 6.
    Y. Yamamoto, S. Machida and G. Björk, Micro-cavity semiconductor lasers wih controlled spontaneous emission, Opt. and Quant. Electron. 24:S215 (1992).CrossRefGoogle Scholar
  7. 7.
    H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E P. Ippen and M. Suzuki, Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities, Opt. and Quant. Electron. 24:S215 (1992).CrossRefGoogle Scholar
  8. 8.
    G. Rempe, Atoms in an optical cavity: quantum electrodynamics in confined space, Contemporary Physics 34:119 (1993).CrossRefGoogle Scholar
  9. 9.
    S. W. Koch, F. Jahnke and W. W. Chow, Physics of semiconductor microcavity lasers, Semicond. Sci. Technol. 10:739 (1995).CrossRefGoogle Scholar
  10. 10.
    Y. Yamamoto and R. E Slusher, Optical process in microcavity, Physics Today June 1993:66 (1993)CrossRefGoogle Scholar
  11. 11.
    F. De Martini and G. R. Jocobovitz, Anomalous spontaneous-stimulated-decay phase transition and zero-threshlod laser action in a microscopic cavity, Phys. Rev. Lett. 60:1711 (1988).CrossRefGoogle Scholar
  12. 12.
    F. De Martini, F. Cairo, P. Mataloni and F. Verzegnassi, Thresholdless microlaser, Phys. Rev. A 46:4220(1992).CrossRefGoogle Scholar
  13. 13.
    R. Loudon, The Quantum Theory of Light, Oxford University Press, Oxford, (1992).Google Scholar
  14. 14.
    P. W. Milonni, The Quantum Vacuum, Academic Press, London, (1994).Google Scholar
  15. 15.
    M. Udea and N. Imoto, Anomalous commutation relation and modified spontaneous emission inside a microcavity, Phys. Rev. A 50:89 (1994).CrossRefGoogle Scholar
  16. 16.
    W. H. Louisell, A. Yariv and A. E. Siegman, Quantum fluctuations and noise in parametric process. I., Phys. Rev. 124:1646 (1961).CrossRefzbMATHGoogle Scholar
  17. 17.
    To be submitted to The Physical Review.Google Scholar
  18. 18.
    S. Gauvin and J. Zyss, Growth of organic crystalline thin films, their optical characterization and application to non-linear optics, J. Crystal Growth (Proceedings of the International Conference on Crystal Growth XI, in press).Google Scholar
  19. 19.
    O. S. Heavens, Optical Properties of Thin Films, Dover, New York, (1965).Google Scholar
  20. 20.
    P. Yeh, Optical Waves in Layered Media, John Wiley & Sons, New York, (1988).Google Scholar
  21. 21.
    Sh. A. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems, Editions Frontières, Orsay, (1992).Google Scholar
  22. 22.
    D. S. Chemla and J. Zyss (Eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, Orlando, (1987)Google Scholar
  23. 23.
    J. Zyss (Ed), Molecular Nonlinear Optics: Materials, Physics and Devices, Academic Press, Boston, (1995).Google Scholar
  24. 24.
    B. F. Levine, C. G. Bethea, C. D. Thurmond, R. T. Lynch and J. L. Bernstein, An organic crystal with an exceptionally large optical second-harmonic coefficient: 2-methyl-4-nitroaniline, J. Appl. Phys. 50:2523 (1979).CrossRefGoogle Scholar
  25. 25.
    G. F. Lipscomb, A. F. Garito and R. S. Narang, An exceptionally large linear electro-optic effect in the organic solid MNA, J. Chem. Phys. 75:1509 (1981).CrossRefGoogle Scholar
  26. 26.
    R. Morita, N. Ogasawara, S. Umegaki, R. Ito, Refractive indices of 2-methyl-4-nitroaniline (MNA), J. Appl Phys. 26:L1711 (1987).Google Scholar
  27. 27.
    To be submitted to The Journal of Optical Society of America B.Google Scholar
  28. 28.
    D. S. Bethune, Optical harmonic generation and mixing in multilayer media: analysis using opical transfer matrix techniques, J. Opt. Soc. Am. B 6:910 (1989).CrossRefGoogle Scholar
  29. 29.
    N. Hashizume, M. Ohashi, T. Kondo and R. Ito, Optical harmonic generation in multilayered structures: a comprehensive analysis, J. Opt. Soc. Am. B 12:1894 (1995).CrossRefGoogle Scholar
  30. 30.
    J. A. Armstrong, N. Bloembergen, J. Ducuing and P. S. Pershan, Interactions between light waves in a nonlinear dielectric, Phys. Rev. 127:1918 (1962).CrossRefGoogle Scholar
  31. 31.
    N. Bloembergen, P. S. Pershan, Light waves at the boundary of nonlinear media, Phys. Rev. 128:606(1962).MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    R. Morita, T. Kondo, Y. Kaneda, A. Sugihashi, N. Ogasawara, S. Umegaki, R. Ito, Dispersion of the second-order nonlinear optical coefficient d 11 of 2-methyl-4-nitroaniline (MNA), J. J. Appl Phys. 27.L1131 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Serge Gauvin
    • 1
  • Joseph Zyss
    • 1
  1. 1.Laboratoire de BagneuxFrance Telecom/CNET/PABBagneux CedexFrance

Personalised recommendations