Traveling Wave Electrode Design for High Speed Mach-Zehnder LiNbO3 Intensity Modulators

  • F. Y. Gan
  • G. L. Yip

Abstract

In order to achieve broadband modulation of electrooptic intensity modulators, design optimization is very important. A thorough understanding of the characteristics of the electrode structure permits parameter optimization in the design of electrooptic modulators. In this paper, calculations of the electric field distribution, impedance, the effective index for microwaves are presented using the Fourier-series method1 for a quasi-static analysis of coplanar waveguide (CPW). Using this approach, the design optimization will also be discussed.

Keywords

Lithium Niobate Characteristic Impedance Effective Index Electric Field Distribution Microwave Theory Tech 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Boyu, X. Guangiun, J. Xiaomin, Traveling wave electrode optimization for high speed electro-optic modulators using the Fourier series method, J. Lightwave Technol. 381:390 (1994).Google Scholar
  2. 2.
    G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. H. Bulmer, and A. S. Greenblatt, Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators, J. Lightwave Techno. 1807:1819 (1994).Google Scholar
  3. 3.
    K. Kawano, T. Kitoh, H. Jumonji, T. Nozwa, and M. Yanagibashi, “New traveling-wave electrode Mach-Zcnder optical modulator with 20 GHz bandwidth and 4.7 V driving voltage at 1.52 μm wavelength,” Electron. Lett. 1382 :1383, (1989).Google Scholar
  4. 4.
    T. Sueta and M. Izutsu, Integrated optic devices for microwave applications, IEEE Trans. Microwave Theory Tech. 477:482 (1990).Google Scholar
  5. 5.
    R. C. Alferness, Waveguide electrooptic modulators, IEEE Irans. Microwave Theory Tech. 1121:1137 (1982).Google Scholar
  6. 6.
    R. A. Becker, Broad-band guided-wave electrooptic modulators, IEEE J. Quantum Electron. 723:727 (1984).Google Scholar
  7. 7.
    C. J. Railton, and J. P. McGeehan, A rigorous and computationally efficient analysis microstrip for use as an electro-optic modulator, IEEE Trans.1099:1103 (1989).Google Scholar
  8. 8.
    C. Yi, S. H. Kim, and S. S. Choi, Finite-element method for the impedance analysis of traveling-wave modulators, J. Lightwave Techno. 817:822 (1990).Google Scholar
  9. 9.
    H. Chung, W. S. C. Chang E. L. Adler. Modeling and optimization of traveling-wave LiNbO3 interferomctric modulator, IEEE Journal of Quanm. Electron. 608:617 (1991).Google Scholar
  10. 10.
    M. Izutu, and T. Sueta, Broad-band guided-wave light intensity modulator, Elec. Commun. 107:116 (1981).Google Scholar
  11. 11.
    X. Zhang and T. Miyoshi, Optimum design of coplanar waveguide for LiNbO3 optical modulator, IEEE Trans. On Microwave Theory and Tech. 523:528, (1995).Google Scholar
  12. 12.
    C. J. G. Kirkby, Refractive index of lithium niobate, wavelength dependence: Tables, in Properties of Lithium Niobate, EMIS Data Review Series No. 5, 92:124 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • F. Y. Gan
    • 1
  • G. L. Yip
    • 1
  1. 1.Guided-Wave Photonics Laboratory Department of Electrical EngineeringMcGill UniversityMontrealCanada

Personalised recommendations