Compact Planar Waveguide Couplers for Broadband Dual-Channel Wavelength (De)Multiplexing

  • M. R. Paiam
  • C. F. Janz
  • R. I. MacDonald
  • B. P. Keyworth
  • J. N. Broughton

Abstract

Rare-earth doped waveguide amplifiers are of interest for applications in planar optical integrated circuits [1]–[3]. Coarse dual-channel wavelength (demultiplexers are needed to separate/combine the signal and pump light. Several integrated devices can perform this multiplexing function [3]–[5]. Conventional directional couplers [3], and unbalanced Mach-Zehnder interferometers [4] are generally characterized by relatively long devices. Composite asymmetric Y-branches [5] employ asymmetry in the refractive index profile and require a two mask fabrication process.

Keywords

Insertion Loss Refractive Index Profile Coupler Length Bend Radius Waveguide Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. N. Ghosh, J. Shmulovich, C. F. Kane, MAX dc Barros, G. Nykolak, A. J. Bruce, and P. C. Becker, “8-mW threshold Er3+-doped planar waveguide amplifier,” IEEE Photon. Technol. Lett., vol. 8, no. 4, pp. 518–520, Apr. 1996.CrossRefGoogle Scholar
  2. 2.
    T. Kitagawa, K. Hattori, Y. Hibino, Y. Ohmori, and M. Horiguchi, “Laser oscilation in Er-dopcd silica-based planar ring resonator,” in Proc. ECOC 1992, pp. 907–910.Google Scholar
  3. 3.
    K. Hattori, T. Kitagawa, M. Oguma, Y. Ohmori, and M. Horiguchi, “Erbium-doped silica-based waveguide am-plifier integrated with a 980/1530 nm WDM coupler,” Electronics Lett., vol. 30, no. 11, pp. 856–857, May 1994.CrossRefGoogle Scholar
  4. 4.
    G. Zhang, S. Honkanen, A. Tervonen, C.-M. Wu, and I. Najafi, “Glass integrated optics circuit for 1.48/1.55 and 1.30/1.55 μm wavelength division multiplexing and 1/8 splitting,” App. Optics, vol. 33, no. 16, pp. 3371–3374, June 1994.CrossRefGoogle Scholar
  5. 5.
    T. Negami, H. Haga, and S. Yamamoto, “Guidcd-wavc optical wavelength demultiplexer using an asymmetric y-junction,” Applied Physics Lett., vol. 54, pp. 1080–1082, 1989.CrossRefGoogle Scholar
  6. 6.
    L. B. Soldano, and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technology, vol. 13, no. 4, pp. 615–627, Apr. 1995.CrossRefGoogle Scholar
  7. 7.
    A. Kumar, R. L. Gallawa, and I. C. Goyal, “Modal characteristics of bent dual mode planar optical waveguides,” J. Lightwave Technol, vol. 12, no. 4, pp. 621–624, Apr. 1994.CrossRefGoogle Scholar
  8. 8.
    C. Janz, B. Keyworth, W. Allegretto, R. MacDonald, M. Fallahi, G. Hillier, and C. Rolland, “Mach-Zehnder switch using an ultra-compact directional coupler in a strongly-confining rib structure,” IEEE Photon. Technol. Lett., vol. 6, pp. 981–983, 1994.CrossRefGoogle Scholar
  9. 9.
    A. Delage, K. McGreer, and E. Rainville, “Modeling of circular waveguides,” Can. J. Phys., vol. 70, pp. 1092–1098, 1992.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • M. R. Paiam
    • 1
  • C. F. Janz
    • 1
  • R. I. MacDonald
    • 1
  • B. P. Keyworth
    • 1
  • J. N. Broughton
    • 2
  1. 1.Telecommunications Research LaboratoriesEdmontonCanada
  2. 2.Alberta Microelectronic CenterEdmontonCanada

Personalised recommendations