Picosecond Optical Pulse Autocorrelator Using Second-Harmonic Generation in ALGaAS Waveguides

  • Y. Beaulieu
  • B. K. Garside
  • A. Delâge
  • S. Janz
  • M. P. Van der Meer
  • R. Normandin

Abstract

An optical pulse autocorrelation detection scheme based on the second-harmonic generation (SHG) of counter-propagating beams1 has been recently demonstrated in AIGaAs waveguides2,3,4 and applied to sensors and OTDR measurements.5 Since the SHG light is emitted perpendicular to the surface, the autocorrelation trace can be observed directly, without scanning delay lines. High SHG efficiencies can be obtained by quasi-phase matching, alternating layers of AIGaAs and GaAs in the waveguide core region. While larger numbers of repetitions can produce better optical coupling, they require higher accuracies on individual layer thickness and Al content. An optimum waveguide design for specific wavelength ranges and growth parameter tolerances is achieved by modelling the second harmonic generation in single-mode waveguides. The standard (100) substrate orientation is appropriate in double-input applications, where the positions of pulse overlaps are monitored. However, in single-input autocorrelator applications, the SHG output of (100) orientation waveguides is plagued by oscillations due to the unavoidable interaction between TE and TM modes. The (211)B orientation corrects that problem and offers both high SHG efficiency and cleavable facets.

Keywords

Optical Coupling Second Harmonic Ridge Waveguide Fundamental Wavelength Autocorrelation Trace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Normandin and G.I. Stegeman, Optics Lett. b, 58 (1979).Google Scholar
  2. 2.
    D. Vashshoori and G. Wang, Appl. Phys. Lett. 53, 347 (1988).CrossRefGoogle Scholar
  3. 3.
    R. Normandin et al., IEEE J. of Quantum Electronics 27, 1520 (1991).CrossRefGoogle Scholar
  4. 4.
    N.D. Whitbread et al., Optics Letters 19, 2089 (1994).CrossRefGoogle Scholar
  5. 5.
    Y. Beaulieu et al., Journal of Nonlinear Optical Physics and Materials 4, 893 (1995).CrossRefGoogle Scholar
  6. 6.
    R. Normandin and G.I. Stegeman, Appl. Phys. Lett. 40, 759 (1982).CrossRefGoogle Scholar
  7. 7.
    R. Normandin and G.I. Stegeman, Appl. Phys. Lett. 36, 253 (1980).CrossRefGoogle Scholar
  8. 8.
    A. Yariv, Quantum Electronics. John Wiley & Sons, New York (1988).Google Scholar
  9. 9.
    J.E. Sipe, J. Opt. Soc. Am. B 4, 481 (1987).Google Scholar
  10. 10.
    D. Vakhshoori et al., Appl. Phys. Lett. 54, 1725 (1989).CrossRefGoogle Scholar
  11. 11.
    N.D. Whitbread et al., Electronics Letters 29, 2106 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Y. Beaulieu
    • 1
  • B. K. Garside
    • 1
  • A. Delâge
    • 2
  • S. Janz
    • 2
  • M. P. Van der Meer
    • 2
  • R. Normandin
    • 2
  1. 1.Opto-Electronics Inc. and the OPCOM consortiumCanada
  2. 2.NRCCanada

Personalised recommendations