Limits of Acousto-Electro-Optic GaAs/GaAlAs Multiple Quantum Well Modulators

  • J. Gazalet
  • S. Bahlak
  • J. E. Lefebvre
  • T. Gryba

Abstract

In the last decade a great interest has been devoted to optical absorption in Multiple Quantum Well (MQW) and superlattice based devices. These structures are characterized by the confinement of charge carriers, electrons and holes, in the neighborhood of each other. This carrier confinement enhances optical absorption via the excitonic resonance in the presence of external electric field. Room temperature Stark Effect is thus improved and is known as “Quantum Confined Stark Effect” (QCSE). As in bulk material, Stark Effect is characterized by the red shift of the optical absorption edge resulting from band gap shrinkage.

Keywords

Absorption Edge Surface Acoustic Wave Contrast Ratio Acoustic Power Multiple Quantum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. C. Jain, K. K. Bhattacharjee “Multiple Quantum Well Optical Modulator Using Surface Acoustic Wave Induced Stark Effect.” IEEE Photonics Technology Letters Vol. 1 No. 10 (October 1989).CrossRefGoogle Scholar
  2. 2.
    D. Cullen, W.J. Tanski, S. W. Merritt, R. N. Sacks, R. D. Carroll, and E. J. Branciforte. “Heterojunction Acoustic Charge Transport Device Technology.” IEEE Ultrasonics Symposium (1988).Google Scholar
  3. 3.
    Y. Kim and W.D. Hunt, “Acoustic fields and velocities for surface acoustic wave propagation in multilayered structures : an extension of the Laguerre polynomial approch.” J. Appl. Phys., 68 (10) (1990).Google Scholar
  4. 4.
    G. E. Pikus and G. L. Bir. “Effect of deformation on the hole energy spectrum of germanium and silicoa” Soviet Physics. Solid State Vol. 1 (1960), pp1502.MathSciNetGoogle Scholar
  5. 5.
    Z. Xu and P. Petroff. “Strain-induced Carrier Confinement in Buried Stressor Structure.” J. Appl. Phys. 69 (9) 1 (May 1991).CrossRefGoogle Scholar
  6. 6.
    W. Q. Chen and S. K. Hark. “Strain-induced Effects in (111)-oriented InAsP/InP, InGaAs/InAlAs quantum wells on InP Substrate.” J. Appl Phys. Vol. 77 (11) (1 June 1995).CrossRefGoogle Scholar
  7. 7.
    D.L. Smith, Sh.M. Kogan, P.P. Ruden and C. Mailhiot “Acousto-optic modulation of m-V semiconductor multiple quantum wells.” Physical Review B Vol. 53, No 3 15 January 1996.Google Scholar
  8. 8.
    G. Bastard. Wave mechanics Applied to semiconductor heterostructures Les Editions de Physique FranceGoogle Scholar
  9. 9.
    K. Nakamura, A. Shimizu, M. Koshiba and K. Hayata. “Finite-element analysis of quantum wells of arbitrary semiconductors with arbitrary potential profiles.” IEEE J. Quantum Electronics. Vol.25 No. (5 May 1989)CrossRefGoogle Scholar
  10. 10.
    K. Nakamura, A. Shimizu, K. Fujii, M. Koshiba and K. Hayata. “Numerical analysis of the absorption and the refractive index change in arbitrary semiconductor quantum-well structures.” IEEE J Quant. Electro. Vol 28 No 7, (July 1992).Google Scholar
  11. 11.
    G. Lengyel, K. W. Jelley and W. H. Engelmann. “A semi-empirical model for electroabsorption in GaAs/AlGaAs multiple quantum well modulator structures.” IEEE J. Quantum Electronics. Vol. 26 No. 2 (February 1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • J. Gazalet
    • 1
  • S. Bahlak
    • 1
  • J. E. Lefebvre
    • 1
  • T. Gryba
    • 1
  1. 1.U.M.R. C.N.R.S. 9929, Institut d’Electronique et de Micro-Electronique du NordD O.A.E UniversitéValenciennes CedexFrance

Personalised recommendations