Skip to main content

Bi-Directional Optical Backplane Bus with Multiple Bus Lines for High Performance Bus Systems

  • Chapter
Applications of Photonic Technology 2
  • 26 Accesses

Abstract

Over the past decade, the demand for more computing power has increased to such an extent that no single processor can provide the solutions in many applications. As a result, various efforts were made to build multiprocessor systems. Among those, systems based on electrical backplane buses, as shown in Fig. 1, have been prevailing in the commercial market mainly due to the ease of design and low cost. However, as the signal speed increases along the backplane, the transmission line effects become dominant, and the bus performance becomes limited by backplane physics1,2. Although advanced buses like Futurebus+3 guarantee an incident wave switching, other inherent problems degrade the performance significantly4. As new faster processors arise, the electrical backplane buses can no longer supply the bandwidth required for high performance multiprocessor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Sweazey, “Limits of performance of backplane buses,” in Digital Bus Handboo, edited by J. De Giacomo, McGraw-Hill, New York(1990).

    Google Scholar 

  2. TEER Futurebus+ P869.1: Logical Layer Specifications, Published by IEEE, New York(1990).

    Google Scholar 

  3. Ray T. Chen, “VME optical backplane bus for high performance computer,” reprinted from Optoelectronics-Device and Technologie.(1994).

    Google Scholar 

  4. J. W. Goodman, F. I. Leonberger, S.-Y. Kung, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEE. 72(7), 850:866(1984).

    Google Scholar 

  5. C. Zhao, Tchang-hun Oh and Ray T. Chen, “General purpose bi-directional optical backplane: high-performance bus for multiprocessor systems,” in Proc. 2nd int’l. conference on massively parallel processing using optical interconnection., E. Schenfeld ed., IEEE Computer Society Press, 188(1995).

    Google Scholar 

  6. J. P. G. Bristow, “Recent progress in optical backplane,” presented at OE/LASE ′94, Los Angeles, California 22–29 January(1994).

    Google Scholar 

  7. J. Hyde, “The Multibus II bus structure,” in Digital Bus Handboo., edited by J. De Giacomo, McGraw-Hill, New York(1990).

    Google Scholar 

  8. A. Takai, T. Kato, S. Yamashita, S. Hanatani, Y. Motegi, K. Ito, H. Abe, and H. Kodera, “200-Mb/s/ch 100-m optical subsystem interconnections using 8-channel 1.3-mm laser diode arrays and single-mode fiber arrays,” Journal of Lightwave Technolog., vol. 12, 260:269(1994).

    Google Scholar 

  9. T. Nagahori, M. Itoh, I. Watanabe, J. Hayashi, and H. Honmou, “150 Mbit/s/ch 12-channel optical parallel interface using an LED and a PD array,” Optics and Quantum Electronic., vol. 24, S479:S489(1992).

    Article  Google Scholar 

  10. R. A. Morgan, “Advances in Vertical Cavity Surface Emitting Lasers,” Proc. SPI., vol. 2147, 97(1994).

    Article  Google Scholar 

  11. D. Vakhshoori, J. D. Wynn, and G. J. Zydzik, “8 x 18 top emitting independently addressable surface emitting laser arrays with uniform threshold current and low threshold voltage,” Applied Physics Utters, vol. 62, 1718:1720(1993).

    Article  Google Scholar 

  12. A. von Lehmen, C. Chang-Hasnain, J. Wullert, L. Carrion, N. Stoffel, L. Florez, and J. Harbison, “Independently addressable InGaAs/GaAs Vertical cavity surface emitting laser arrays,” Electronics Utter., vol. 27, 583:585(1991).

    Article  Google Scholar 

  13. R. A. Novotny, “Parallel optical data links using VCSELs,” Proc. SPI., vol. 2147, 140–149(1994).

    Article  Google Scholar 

  14. S. Tang, R. T. Chen, D. Gerald, M. M. Li, C. Zhao, S. Natarajan, and J. Lin, “Design limitations of highly parallel free-space optical interconnects based on arrays of vertical-cavity surface emitting laser diodes, microlenses, and photodetectors,” Proc. SPI., vol. 2153, 323:33(1994).

    Article  Google Scholar 

  15. T. V. Muoi, “Receivers design for high-speed optical-fiber systems,” Journal of Lightwave Technolog., vol. LT-2, 243:267(1984).

    Article  Google Scholar 

  16. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth characterization,” IEEE J. Quantum Electron., vol. QE-27, 1332:1346(1991).

    Article  Google Scholar 

  17. K. Uomi, S. J. B. Yoo, A. Scherer, R. Bhat, N. C. Andreadakis, C. E. Zah, M. A. Koza and T. P. Lee, “Low threshold, room temperature pulsed operation of 1.5 μm vertical-cavity surface-emitting lasers with an optimized multi-quantum well active layer,” IEEE Photon. Tech. Lett., vol. 6, 317:319(1994).

    Article  Google Scholar 

  18. M. J. Wale and C. Edge, “Self-aligned flip-chip assembly of photonic devices with electrical and optical connections,” IEEE Transactions on Components, Hybrids and Manufacturing Technolog, vol. 13, 780:786(1990).

    Google Scholar 

  19. H. Deng, C. C. Lin, D. L. Huffaker, Q. Deng and D. G. Deppe, “Temperature dependence of the transverse lasing mode in vertical-cavity lasers,” J. Appl. Phys., vol. 77, pp. 2279–2286, 1995.

    Article  Google Scholar 

  20. C. Lin, Optoelectronic Technology and Lightwave Communications System. (Van Nostrand Reinhold, New York, ch. 15(1989).

    Book  Google Scholar 

  21. C. Zhao and Ray T. Chen, “Performance consideration of three-dimensional optoelectronic interconnection for intra-multichip-module clock signal distribution,” has been sent to J. Appl. Opt. for publication 1996).

    Google Scholar 

  22. SELFOC Product Guide, NSG American, Inc., somerset, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhao, C., Chen, R.T. (1997). Bi-Directional Optical Backplane Bus with Multiple Bus Lines for High Performance Bus Systems. In: Lampropoulos, G.A., Lessard, R.A. (eds) Applications of Photonic Technology 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9250-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9250-8_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9252-2

  • Online ISBN: 978-1-4757-9250-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics