Graded Effective Index Planar Polymer Waveguides with Application to Erbium-Doped Waveguide Amplifiers

  • J. N. McMullin
  • D. W. Boertjes
  • M. Krishnaswamy
  • B. P. Keyworth

Abstract

A polymer waveguide of parabolic cross-section is shown to produce a lateral graded effective index for each of the discrete vertical modes of the polymer layer due to lateral variation of the waveguide height. Beam propagation simulations are in excellent agreement with recorded images of oscillating guided beams in a waveguide fabricated on glass. Results are also shown for a waveguide fabricated on an erbium/ytterbium co-doped bulk glass substrate in which a transmitted 1550 nm signal showed enhancement of up to 1.7 dB with 210 mW of 975 nm pump light in a 1.0 cm long guide.

Keywords

Effective Index Pump Light Waveguide Core Spontaneous Emission Spectrum Polymer Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. T. Chen, H. Lu, D. Robinson, Z. Sun, T. Jannson, D. V. Plant, and H. R. Fetterman, 60 GHz board-to-board optical interconnection using polymer optical buses in conjunction with microprism couplers, Appl. Phys. Lett., vol. 60, no. 5, pp. 536–538 (1992).CrossRefGoogle Scholar
  2. 2.
    D. H. Hartman, G. R. Lalk, J. W. Howse, and R. R. Krchnavek, Radiant cured polymer optical waveguides on printed circuit boards for photonic interconnection use, Appl. Opt., vol. 28, no. 1, pp. 40–47 (1989).CrossRefGoogle Scholar
  3. 3.
    R. R. Krchnavek, G. R. Lalk, and D. H. Hartman, Laser direct writing of channel waveguides using spin-on polymers, J. Appl. Phys., vol. 66, no. 11, pp. 5156–5160 (1989).CrossRefGoogle Scholar
  4. 4.
    W. Yu, W. Krôlikowski, B. Luther-Davies, M. Webster, and M. Austin, Wave mixing and beam profile control in a photorefractive waveguide, Opt. Lett., vol. 20, no. 6, pp. 563–565 (1995).CrossRefGoogle Scholar
  5. 5.
    B. P. Keyworth, J. N. McMullin, R. Narendra, and R. I. MacDonald, Computer-controlled pressure-dispensed multimode polymer waveguides, IEEE Transactions CPMT — Part B, vol. 18, no. 3, pp. 572–577(1995).Google Scholar
  6. 6.
    G. Nykolak, M. Haner, P. C. Becker, J. Shmulovich, and Y. H. Wong, Systems evaluation of an Er3+-doped planar waveguide amplifier, IEEE Photon. Technol Lett., vol. 5, no. 10, pp 1185–1187 (1993).CrossRefGoogle Scholar
  7. 7.
    R. N. Ghosh, J. Shmulovich, C. F. Kane, M. R. X. de Barros, G. Nykolak, A. J. Bruce, and P. C. Becker, 8-mW threshold Er3+-doped planar waveguide amplifier, IEEE Photon. Technol. Lett., vol. 8, no. 4, pp. 518–520(1996).CrossRefGoogle Scholar
  8. 8.
    W. J. Miniscalco, Erbium-doped glasses for fiber amplifiers at 1550 nm, IEEE J. Lightwave Technol., vol. 9, no. 2, pp. 234–250(1991).CrossRefGoogle Scholar
  9. 9.
    W. J. Wang, S. I. Najafi, S. Honkanen, Q. He, C. Wu, and J. Glinski, Erbium doped composite glass waveguide amplifier, Electron. Lett., vol. 28, no. 20, 1872–1873 (1992).CrossRefGoogle Scholar
  10. 10.
    T. Tamir (Ed.), Ch. 2, Guided-Wave Optoelectronics (2nd ed.), Springer-Verlag, Berlin (1990).Google Scholar
  11. 11.
    J. N. McMullin, Optical circuit board simulations using the propagating beam method, Proceedings of the First International Workshop on Photonics — Networks, Components & Applications, Montebello, Quebec, Oct 11–13, 1990, in Series in Optics and Photonics, vol. t2, Word Scientific, Singapore pp. 358–362(1990).Google Scholar
  12. 12.
    K. Thyagarajan, V. Mahalakshmi, M. R. Shenoy, Equivalent waveguide model for parabolic index planar segmented waveguides, Optics Comm., vol. 121, part 1/3, pp. 27–30 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • J. N. McMullin
    • 1
  • D. W. Boertjes
    • 1
  • M. Krishnaswamy
    • 1
  • B. P. Keyworth
    • 1
  1. 1.Telecommunications Research Laboratories (TRLabs)EdmontonCanada

Personalised recommendations