Holographic Gratings in Photopolymers as Optical Gas Monitors

  • El Mehdi El Joudi
  • Hilmar Franke


Gratings form efficient integrated optical devices for coupling into and out of a waveguide. Grating couplers have been proposed as chemical sensors1. The adsorption and desorption of chemical vapors on lightguide surfaces alters the evanescent field of the guide and changes ist coupling efficiencies2. Using low refractive index material like Si O2 on MgF2 the adsorption or desorption of chemical vapors alters the effective index of planar waveguides significantly and the coupling angle of a grating coupler is shifted. This shift can be detected and used for measuring chemical vapor concentrations3. Changing the effective refractive index of gratings in Si O2 on Ti O2 the angle of the out coupled light could be changed significantly. Output gratings of this type were succesfully used as chemical and biological sensors4, 5.


Diffraction Efficiency Planar Waveguide Polyimide Film Holographic Grating Refractive Index Modulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated- optical chemical sensors” J. Opt. Soc. Am. B6, 209 (1989)CrossRefGoogle Scholar
  2. 2.
    W. Lukosz and K. Tiefenthaler, “Directional switching in planar waveguides affected by adsorption-desorption processes”, 2nd ECIO Florence 1983, JEE Conf. Publ. 227, London 152 (1983)Google Scholar
  3. 3.
    A. Brandenburg and A. Gombert, “Grating couplers as chemical sensors: a new optical cofiguration”, Sensors and Actuators B17, 35 (1993)CrossRefGoogle Scholar
  4. 4.
    W. Lukosz, Ph. M. Nellen, Ch. Stamm and P. Weiss, “Output grating couplers on planar waveguides as integrated optical chemical sensors”, Sensors and Actuators B1, 585 (1990)CrossRefGoogle Scholar
  5. 5.
    Ph. M. Nellen and W. Lukosz, “Integrated optical input grating couplers as chemo- and immunosensors”, Sensors and Actuators B1, 592 (1990)CrossRefGoogle Scholar
  6. 6.
    C. Feger and H. Franke “Polyimides in high performance packaging”:in Ghosh/Mittal “Polyimides”Marcel Dekker, pp 759–814 (1996)Google Scholar
  7. 7.
    H. Franke, T. Kleckers, D. Wagner, R. Reuter and H. V. Rohitkumar and B.A. Blech “Measuring Humidity with Planar Polyimide Lightguides”, Appl. Opt. 32, 2927(1993)CrossRefGoogle Scholar
  8. 8.
    L. A. Hornak “Polymers for Lightrwave and integrated optics”, Marcel Dekker, N. Y. (1992)Google Scholar
  9. 9.
    OCG Microelectronic Materials Inc. product information “Probimide series 400”Google Scholar
  10. 10.
    H. Kogrelnik, “Coupled wave theory for thick hologram gratings”, Bell Sys. Tech. J. 48, 2909 (1969)CrossRefGoogle Scholar
  11. 11.
    K. Reuter and H. Franke (Univ. Osnabrück), “Monitoring humidity by polyimide lightguides” Appl. Phys. Lett. 52, (1988) 778CrossRefGoogle Scholar
  12. 12.
    G. Williams, D. C. Watts, S. B. Devand, A. M. North: Trans. Farad. Soc. 67, 1323 (1971)CrossRefGoogle Scholar
  13. 13.
    T. Lückemeyer and H. Franke; “Profiles in volume phase holograms”, Appl. Phys. B46, 147(1988)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • El Mehdi El Joudi
    • 1
  • Hilmar Franke
    • 1
  1. 1.Applied PhysicsGeorg-Mercator-Universität-Gesamthochschule DuisburgDuisburgGermany

Personalised recommendations